Generalization of the concept of centroid in solving stereometric problems
Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 26-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The note considers the concept of the centroid of a system of points in space (for points with the same unit mass) and gives examples of solving stereometric problems using this concept.
@article{MO_2022_104_4_a3,
     author = {S. V. Zharov},
     title = {Generalization of the concept of centroid in solving stereometric problems},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {26--27},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_104_4_a3/}
}
TY  - JOUR
AU  - S. V. Zharov
TI  - Generalization of the concept of centroid in solving stereometric problems
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 26
EP  - 27
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_104_4_a3/
LA  - ru
ID  - MO_2022_104_4_a3
ER  - 
%0 Journal Article
%A S. V. Zharov
%T Generalization of the concept of centroid in solving stereometric problems
%J Matematičeskoe obrazovanie
%D 2022
%P 26-27
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_104_4_a3/
%G ru
%F MO_2022_104_4_a3
S. V. Zharov. Generalization of the concept of centroid in solving stereometric problems. Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 26-27. http://geodesic.mathdoc.fr/item/MO_2022_104_4_a3/

[1] S. B. Gashkov, Tsentry tyazhesti i geometriya, MTsNMO, M., 2015, 64 pp.

[2] A. M. Lopshits, Analiticheskaya geometriya, Uchpedgiz, M., 1948, 588 pp.