Oriented angles, generalized pedal triangles and generalized Simson lines
Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 2-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, with the help of oriented angles, the concepts of a generalized pedal triangle and a generalized Simson's line are introduced. For the newly introduced concepts, several properties are proved that are analogous to those of pedal triangles and the Simson line.
@article{MO_2022_104_4_a0,
     author = {A. N. Afanasyev},
     title = {Oriented angles, generalized pedal triangles and generalized {Simson} lines},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--10},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_104_4_a0/}
}
TY  - JOUR
AU  - A. N. Afanasyev
TI  - Oriented angles, generalized pedal triangles and generalized Simson lines
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 2
EP  - 10
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_104_4_a0/
LA  - ru
ID  - MO_2022_104_4_a0
ER  - 
%0 Journal Article
%A A. N. Afanasyev
%T Oriented angles, generalized pedal triangles and generalized Simson lines
%J Matematičeskoe obrazovanie
%D 2022
%P 2-10
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_104_4_a0/
%G ru
%F MO_2022_104_4_a0
A. N. Afanasyev. Oriented angles, generalized pedal triangles and generalized Simson lines. Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 2-10. http://geodesic.mathdoc.fr/item/MO_2022_104_4_a0/

[1] A. Ruinskii, “Pedalnyi treugolnik”, Matematicheskoe obrazovanie, 2001, no. 3(18), 31–48

[2] A. Ruinskii, “Pedalnyi treugolnik”, 2001, no. 4(19), 65–78

[3] S. L. Greittser, G. S. M. Kokseter, Novye vstrechi s geometriei, Nauka, M., 1978

[4] E. D. Kulanin, “O pryamykh Simsona, krivoi Shteinera i kubike Mak-Keya”, Matematicheskoe prosveschenie, 2020, no. 10, 243–264

[5] Evan Chen, Euclidean Geometry in Mathematical Olympiads, The Mathematical Association of America, 2016 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3467691'>3467691</ext-link>

[6] A. N. Afanasev, “Prostye geometricheskie fakty, pomogayuschie reshit zadachu po geometrii”, Matematicheskoe obrazovanie, 2020, no. 2(94), 2–17

[7] A. N. Afanasev, Olimpiadnye zadachi po geometrii, Ileksa, 2022