On one (algebraic) solution of the Euler equations
Matematičeskoe obrazovanie, Tome 103 (2022) no. 3, pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In previous papers, a generalization of the well-known Euler equation with an arbitrary differentiable generating function was proposed. Criteria are formulated that allow direct integration of inhomogeneous equations, bypassing the well-known Lagrange method of variation of arbitrary constants. The disadvantage of the method is the necessity of $n$-fold integration of the equation. The present paper considers the idea of replacing the $n$-fold integration with a system of linear equations obtained by a single integration of the original $n$-order equation with the found roots of the characteristic equation.
@article{MO_2022_103_3_a1,
     author = {E. M. Arkhipova and V. V. Ivlev and E. A. Krivoshey},
     title = {On one (algebraic) solution of the {Euler} equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_103_3_a1/}
}
TY  - JOUR
AU  - E. M. Arkhipova
AU  - V. V. Ivlev
AU  - E. A. Krivoshey
TI  - On one (algebraic) solution of the Euler equations
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 15
EP  - 22
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_103_3_a1/
LA  - ru
ID  - MO_2022_103_3_a1
ER  - 
%0 Journal Article
%A E. M. Arkhipova
%A V. V. Ivlev
%A E. A. Krivoshey
%T On one (algebraic) solution of the Euler equations
%J Matematičeskoe obrazovanie
%D 2022
%P 15-22
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_103_3_a1/
%G ru
%F MO_2022_103_3_a1
E. M. Arkhipova; V. V. Ivlev; E. A. Krivoshey. On one (algebraic) solution of the Euler equations. Matematičeskoe obrazovanie, Tome 103 (2022) no. 3, pp. 15-22. http://geodesic.mathdoc.fr/item/MO_2022_103_3_a1/

[1] V. V. Ivlev, M. V. Baranova, “Ob odnom klasse lineinykh differentsialnykh uravnenii”, Matematicheskoe obrazovanie, 2012, no. 4 (64), 35–40 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1302.86017'>1302.86017</ext-link>

[2] V. V. Ivlev, Matematicheskii analiz. Izbrannoe, AO “Izdatelstvo IKAR”, M., 2018