Extended introduction to algebraic interpolation
Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 63-74

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes and justifies operators that allow one to find coefficients of interpolation polynomials and invert Vandermonde matrices. In addition, we give estimates for the complexity of these operators and questions of their software implementation are discussed.
@article{MO_2022_101_1_a7,
     author = {S. Soloviev},
     title = {Extended introduction to algebraic interpolation},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/}
}
TY  - JOUR
AU  - S. Soloviev
TI  - Extended introduction to algebraic interpolation
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 63
EP  - 74
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/
LA  - ru
ID  - MO_2022_101_1_a7
ER  - 
%0 Journal Article
%A S. Soloviev
%T Extended introduction to algebraic interpolation
%J Matematičeskoe obrazovanie
%D 2022
%P 63-74
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/
%G ru
%F MO_2022_101_1_a7
S. Soloviev. Extended introduction to algebraic interpolation. Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/