Extended introduction to algebraic interpolation
Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes and justifies operators that allow one to find coefficients of interpolation polynomials and invert Vandermonde matrices. In addition, we give estimates for the complexity of these operators and questions of their software implementation are discussed.
@article{MO_2022_101_1_a7,
     author = {S. Soloviev},
     title = {Extended introduction to algebraic interpolation},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/}
}
TY  - JOUR
AU  - S. Soloviev
TI  - Extended introduction to algebraic interpolation
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 63
EP  - 74
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/
LA  - ru
ID  - MO_2022_101_1_a7
ER  - 
%0 Journal Article
%A S. Soloviev
%T Extended introduction to algebraic interpolation
%J Matematičeskoe obrazovanie
%D 2022
%P 63-74
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/
%G ru
%F MO_2022_101_1_a7
S. Soloviev. Extended introduction to algebraic interpolation. Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/

[1] T. Kh. Kormen, Ch. I. Leizerson, R. L. Rivest, K. Shtain, Algoritmy: postroenie i analiz., ID Vilyams, M., 2005

[2] A. G. Sveshnikov, A. N. Tikhonov, Teoriya funktsii kompleksnoi peremennoi., Fizmatlit, M., 2010 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=349959'>349959</ext-link>

[3] E. E. Tyrtyshnikov, Metody chislennogo analiza., ITs Akademiya, M., 2007

[4] E. E. Tyrtyshnikov, Osnovy algebry., Fizmatlit, M., 2017

[5] M. V. Ulyanov, Resursno-effektivnye kompyuternye algoritmy: razrabotka i analiz., Fizmatlit, M., 2008

[6] B. Beckermann, “The condition number of real Vandermonde, Krylov and positive definite Hankel matrices”, Numerische Mathematik., 85:4 (2000), 553–577 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/PL00005392'>10.1007/PL00005392</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1771780'>1771780</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0965.15003'>0965.15003</ext-link>

[7] A. Borodin, I. Munro, The computational complexity of algebraic and numeric problems., American Elsevier Publishing Company, Inc., New York-London-Amsterdam, 1975 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=468309'>468309</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0404.68049'>0404.68049</ext-link>

[8] J. F. Traub, “Associated polynomials and uniform methods for the solution of linear problems”, SIAM Review., 7:3 (1966), 277–301 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/1008061'>10.1137/1008061</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=207238'>207238</ext-link>

[9] L. N. Trefethen, Approximation Theory and Approximation Practice., SIAM, Oxford, UK, 2013 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3012510'>3012510</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1264.41001'>1264.41001</ext-link>