Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2022_101_1_a7, author = {S. Soloviev}, title = {Extended introduction to algebraic interpolation}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {63--74}, publisher = {mathdoc}, volume = {101}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/} }
S. Soloviev. Extended introduction to algebraic interpolation. Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/MO_2022_101_1_a7/
[1] T. Kh. Kormen, Ch. I. Leizerson, R. L. Rivest, K. Shtain, Algoritmy: postroenie i analiz., ID Vilyams, M., 2005
[2] A. G. Sveshnikov, A. N. Tikhonov, Teoriya funktsii kompleksnoi peremennoi., Fizmatlit, M., 2010 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=349959'>349959</ext-link>
[3] E. E. Tyrtyshnikov, Metody chislennogo analiza., ITs Akademiya, M., 2007
[4] E. E. Tyrtyshnikov, Osnovy algebry., Fizmatlit, M., 2017
[5] M. V. Ulyanov, Resursno-effektivnye kompyuternye algoritmy: razrabotka i analiz., Fizmatlit, M., 2008
[6] B. Beckermann, “The condition number of real Vandermonde, Krylov and positive definite Hankel matrices”, Numerische Mathematik., 85:4 (2000), 553–577 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/PL00005392'>10.1007/PL00005392</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1771780'>1771780</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0965.15003'>0965.15003</ext-link>
[7] A. Borodin, I. Munro, The computational complexity of algebraic and numeric problems., American Elsevier Publishing Company, Inc., New York-London-Amsterdam, 1975 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=468309'>468309</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0404.68049'>0404.68049</ext-link>
[8] J. F. Traub, “Associated polynomials and uniform methods for the solution of linear problems”, SIAM Review., 7:3 (1966), 277–301 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/1008061'>10.1137/1008061</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=207238'>207238</ext-link>
[9] L. N. Trefethen, Approximation Theory and Approximation Practice., SIAM, Oxford, UK, 2013 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3012510'>3012510</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1264.41001'>1264.41001</ext-link>