Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$
Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the possibility of reducing the sum of a series of the indicated type to elementary functions — both directly and in terms of some approximations. For this it is convenient to use the symmetric meromorphic function of two variables $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$.
@article{MO_2022_101_1_a5,
     author = {E. I. Znak},
     title = {Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_101_1_a5/}
}
TY  - JOUR
AU  - E. I. Znak
TI  - Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 48
EP  - 54
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_101_1_a5/
LA  - ru
ID  - MO_2022_101_1_a5
ER  - 
%0 Journal Article
%A E. I. Znak
%T Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$
%J Matematičeskoe obrazovanie
%D 2022
%P 48-54
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_101_1_a5/
%G ru
%F MO_2022_101_1_a5
E. I. Znak. Sums of series of the form $\sum\limits^{\infty}_{k=1}\frac{1}{k^2+ak+b}$. Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 48-54. http://geodesic.mathdoc.fr/item/MO_2022_101_1_a5/