Trigonometry and problem solving in geometry
Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 12-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, using the example of a number of Olympiad problems, it is shown that a solution using trigonometry quickly and easily leads to an answer, while the possibility of finding a purely geometric solution is not obvious.
@article{MO_2022_101_1_a2,
     author = {A. N. Afanasyev},
     title = {Trigonometry and problem solving in geometry},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {12--20},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_101_1_a2/}
}
TY  - JOUR
AU  - A. N. Afanasyev
TI  - Trigonometry and problem solving in geometry
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 12
EP  - 20
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_101_1_a2/
LA  - ru
ID  - MO_2022_101_1_a2
ER  - 
%0 Journal Article
%A A. N. Afanasyev
%T Trigonometry and problem solving in geometry
%J Matematičeskoe obrazovanie
%D 2022
%P 12-20
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_101_1_a2/
%G ru
%F MO_2022_101_1_a2
A. N. Afanasyev. Trigonometry and problem solving in geometry. Matematičeskoe obrazovanie, Tome 101 (2022) no. 1, pp. 12-20. http://geodesic.mathdoc.fr/item/MO_2022_101_1_a2/

[1] A. N. Afanasev, “Pyat reshenii odnoi izvestnoi zadachi”, Matematicheskoe obrazovanie, 2018, no. 3 (87), 2–7

[2] I. F. Sharygin, Zadachi po geometrii (Planimetriya), Bibliotechka “Kvant”, Nauka, M., 1986, 224 pp.

[3] P. Yui, Euclidean Geometry Notes, <ext-link ext-link-type='uri' href='http://math.fau.edu/Yiu/EuclideanGeometryNotes.pdf'>http://math.fau.edu/Yiu/EuclideanGeometryNotes.pdf</ext-link>

[4] S. V. Romanov, I. F. Sharygin, “Algebraicheskii metod resheniya geometricheskikh zadach”, Kvant, 1975, no. 11, 47–49