The method of affine transformations for solving Diophantine equations
Matematičeskoe obrazovanie, Tome 99 (2021) no. 3, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this work is to find rational points of a curve in the plane defined by an equation of the second degree.
@article{MO_2021_99_3_a9,
     author = {B. Zh. Sagindykov},
     title = {The method of affine transformations for solving {Diophantine} equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_99_3_a9/}
}
TY  - JOUR
AU  - B. Zh. Sagindykov
TI  - The method of affine transformations for solving Diophantine equations
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 89
EP  - 94
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_99_3_a9/
LA  - ru
ID  - MO_2021_99_3_a9
ER  - 
%0 Journal Article
%A B. Zh. Sagindykov
%T The method of affine transformations for solving Diophantine equations
%J Matematičeskoe obrazovanie
%D 2021
%P 89-94
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_99_3_a9/
%G ru
%F MO_2021_99_3_a9
B. Zh. Sagindykov. The method of affine transformations for solving Diophantine equations. Matematičeskoe obrazovanie, Tome 99 (2021) no. 3, pp. 89-94. http://geodesic.mathdoc.fr/item/MO_2021_99_3_a9/

[1] B. Zh. Sagindykov, Bimurat Zhanar, “Estestvennye i matematicheskie nauki: voprosy i tendentsii razvitiya”, materialy mezhdunarodnoi zaochnoi-prakticheskoi konferentsii 01 aprelya 2013 g., Novosibirsk, 2013, 150 pp.

[2] B. Zh. Sagindykov, T. E. Dzhatykov, “Dostizheniya vuzovskoi nauki 2021”: sbornik statei KhVII mezhdunarodnogo nauchno-issledovatelskogo konkursa, MTsNS “Nauka i prosveschenie”, Penza, 2021, 382 pp.

[3] N. J. Wildberger, Pell's equation without irrational numbers, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/0806.2490'>0806.2490v1 [math.H0]</ext-link>