Which function is more, $a^x$ or $x^p$?
Matematičeskoe obrazovanie, Tome 99 (2021) no. 3, pp. 86-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The range of values $x$ is described, for which the function $x^p$ is larger than the function $a^x$. It is proved that this region is a segment $(l, r)$ and an asymptotically sharp estimate for the boundaries is given.
@article{MO_2021_99_3_a8,
     author = {A. A. Ruban},
     title = {Which function is more, $a^x$ or $x^p$?},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {86--88},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_99_3_a8/}
}
TY  - JOUR
AU  - A. A. Ruban
TI  - Which function is more, $a^x$ or $x^p$?
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 86
EP  - 88
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_99_3_a8/
LA  - ru
ID  - MO_2021_99_3_a8
ER  - 
%0 Journal Article
%A A. A. Ruban
%T Which function is more, $a^x$ or $x^p$?
%J Matematičeskoe obrazovanie
%D 2021
%P 86-88
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_99_3_a8/
%G ru
%F MO_2021_99_3_a8
A. A. Ruban. Which function is more, $a^x$ or $x^p$?. Matematičeskoe obrazovanie, Tome 99 (2021) no. 3, pp. 86-88. http://geodesic.mathdoc.fr/item/MO_2021_99_3_a8/

[1] B. P. Demidovich, I. A. Maron, Osnovy vychislitelnoi matematiki, Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1966, 137 pp.