Methods of calculating the number $e$ as a topic of educational research
Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 50-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known formula of calculus $e=\lim\limits_{n\to\infty}(1+1/n)^n$ was taken as the starting point of the study and the task of increasing the rate of convergence of the basic sequence was set. On this basis, a new method of calculating is built.
@article{MO_2021_98_2_a6,
     author = {V. M. Fedoseev},
     title = {Methods of calculating the number $e$ as a topic of educational research},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {50--53},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_98_2_a6/}
}
TY  - JOUR
AU  - V. M. Fedoseev
TI  - Methods of calculating the number $e$ as a topic of educational research
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 50
EP  - 53
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_98_2_a6/
LA  - ru
ID  - MO_2021_98_2_a6
ER  - 
%0 Journal Article
%A V. M. Fedoseev
%T Methods of calculating the number $e$ as a topic of educational research
%J Matematičeskoe obrazovanie
%D 2021
%P 50-53
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_98_2_a6/
%G ru
%F MO_2021_98_2_a6
V. M. Fedoseev. Methods of calculating the number $e$ as a topic of educational research. Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 50-53. http://geodesic.mathdoc.fr/item/MO_2021_98_2_a6/

[1] L. Eiler, Vvedenie v analiz beskonechnykh, v. 1, GIFML, M., 21961, 316 pp.

[2] A. P. Yushkevich, Istoriya matematiki v Rossii, Nauka, M., 1968, 592 pp.

[3] L. A. Lyusternik, A. R. Yanpolskii (red.), Matematicheskii analiz. Funktsii, predely, ryady, tsepnye drobi, Spravochnaya matematicheskaya biblioteka, Fizmatgiz, M., 1961, 440 pp.