Triangles with specified values of the incircle and circumcircle radii
Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analysis of triangles given by the radii of the inscribed and circumscribed circles presented in this article can be considered as an example of the successful application of a specially developed universal method for determining a triangle by its elements.
@article{MO_2021_98_2_a3,
     author = {S. F. Osinkin},
     title = {Triangles with specified values of the incircle and circumcircle radii},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_98_2_a3/}
}
TY  - JOUR
AU  - S. F. Osinkin
TI  - Triangles with specified values of the incircle and circumcircle radii
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 28
EP  - 33
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_98_2_a3/
LA  - ru
ID  - MO_2021_98_2_a3
ER  - 
%0 Journal Article
%A S. F. Osinkin
%T Triangles with specified values of the incircle and circumcircle radii
%J Matematičeskoe obrazovanie
%D 2021
%P 28-33
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_98_2_a3/
%G ru
%F MO_2021_98_2_a3
S. F. Osinkin. Triangles with specified values of the incircle and circumcircle radii. Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 28-33. http://geodesic.mathdoc.fr/item/MO_2021_98_2_a3/

[1] P. Mironescu, L. Panaitopol, “The existence of a triangle with prescribed angle bisector lengths”, Amer. Math. Monthly, 101 (1994), 58–60 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00029890.1994.11996906'>10.1080/00029890.1994.11996906</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0802.51017'>0802.51017</ext-link>

[2] A. Zhukov, I. Akulich, Odnoznachno li opredelyaetsya treugolnik?, Kvant, 2003, no. 1, 29–31

[3] S. Osinkin, “On the existence of a triangle with prescribed bisector lengths”, Forum Geometricorum, 16 (2016), 399–405 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1362.51017'>1362.51017</ext-link>

[4] S. Osinkin, The method and examples of solving problems analogous to the “problem of three bisectors”, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1910.01855'>1910.01855v1 [math.H0]</ext-link>

[5] D. O. Shklyarskii, N. N. Chentsov, I. M. Yaglom, Izbrannye zadachi i teoremy elementarnoi matematiki, v. 2, Geometriya (planimetriya), Gos. izd. tekhniko-teoreticheskoi literatury, M., 1952

[6] R. Kurant, G. Robbins, Chto takoe matematika?, MTsNMO, M., 2004

[7] V. I. Golubev, L. N. Erganzhieva, K. K. Mosevich, Postroenie treugolnika, 4-e izd., Laboratoriya znanii, M., 2015