Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2021_98_2_a3, author = {S. F. Osinkin}, title = {Triangles with specified values of the incircle and circumcircle radii}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {28--33}, publisher = {mathdoc}, volume = {98}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2021_98_2_a3/} }
S. F. Osinkin. Triangles with specified values of the incircle and circumcircle radii. Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 28-33. http://geodesic.mathdoc.fr/item/MO_2021_98_2_a3/
[1] P. Mironescu, L. Panaitopol, “The existence of a triangle with prescribed angle bisector lengths”, Amer. Math. Monthly, 101 (1994), 58–60 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00029890.1994.11996906'>10.1080/00029890.1994.11996906</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0802.51017'>0802.51017</ext-link>
[2] A. Zhukov, I. Akulich, Odnoznachno li opredelyaetsya treugolnik?, Kvant, 2003, no. 1, 29–31
[3] S. Osinkin, “On the existence of a triangle with prescribed bisector lengths”, Forum Geometricorum, 16 (2016), 399–405 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1362.51017'>1362.51017</ext-link>
[4] S. Osinkin, The method and examples of solving problems analogous to the “problem of three bisectors”, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1910.01855'>1910.01855v1 [math.H0]</ext-link>
[5] D. O. Shklyarskii, N. N. Chentsov, I. M. Yaglom, Izbrannye zadachi i teoremy elementarnoi matematiki, v. 2, Geometriya (planimetriya), Gos. izd. tekhniko-teoreticheskoi literatury, M., 1952
[6] R. Kurant, G. Robbins, Chto takoe matematika?, MTsNMO, M., 2004
[7] V. I. Golubev, L. N. Erganzhieva, K. K. Mosevich, Postroenie treugolnika, 4-e izd., Laboratoriya znanii, M., 2015