On inequalities in a tetrahedron
Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 18-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact boundaries of variation of the surface area, volume, and other quantities of tetrahedrons are found for a given ratio of the radii of the inscribed and circumscribed spheres. The relationship between the method of conditional extremum and envelopes is considered on rather bright and meaningful examples. To be continued.
@article{MO_2021_98_2_a2,
     author = {V. N. Novikov},
     title = {On inequalities in a tetrahedron},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_98_2_a2/}
}
TY  - JOUR
AU  - V. N. Novikov
TI  - On inequalities in a tetrahedron
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 18
EP  - 27
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_98_2_a2/
LA  - ru
ID  - MO_2021_98_2_a2
ER  - 
%0 Journal Article
%A V. N. Novikov
%T On inequalities in a tetrahedron
%J Matematičeskoe obrazovanie
%D 2021
%P 18-27
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_98_2_a2/
%G ru
%F MO_2021_98_2_a2
V. N. Novikov. On inequalities in a tetrahedron. Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 18-27. http://geodesic.mathdoc.fr/item/MO_2021_98_2_a2/