Modeling the contours of plant leaves in the GeoGebra environment
Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses the use of the capabilities of the interactive mathematical system GeoGebra for modeling the contours of plant leaves by equations given in a polar coordinate system. To be continued.
@article{MO_2021_98_2_a1,
     author = {G. A. Klekovkin},
     title = {Modeling the contours of plant leaves in the {GeoGebra} environment},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_98_2_a1/}
}
TY  - JOUR
AU  - G. A. Klekovkin
TI  - Modeling the contours of plant leaves in the GeoGebra environment
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 5
EP  - 17
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_98_2_a1/
LA  - ru
ID  - MO_2021_98_2_a1
ER  - 
%0 Journal Article
%A G. A. Klekovkin
%T Modeling the contours of plant leaves in the GeoGebra environment
%J Matematičeskoe obrazovanie
%D 2021
%P 5-17
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_98_2_a1/
%G ru
%F MO_2021_98_2_a1
G. A. Klekovkin. Modeling the contours of plant leaves in the GeoGebra environment. Matematičeskoe obrazovanie, Tome 98 (2021) no. 2, pp. 5-17. http://geodesic.mathdoc.fr/item/MO_2021_98_2_a1/

[1] O. L. Bezumova, R. P. Ovchinnikova, O. N. Troitskaya i dr., Obuchenie geometrii s ispolzovaniem vozmozhnostei GeoGebra, Ucheb.-metod. posobie, KIRA, Arkhangelsk, 2011, 140 pp.

[2] N. N. Vorobev, Teoriya ryadov, 6-e izd., stereotip., Lan, SPb, 2002, 408 pp.

[3] A. R. Esayan, “Postroenie lokusov v GeoGebra”, Vestnik RUDN. Seriya: Informatizatsiya obrazovaniya, 14:3 (2017), 334–347

[4] A. A. Savelov, Ploskie krivye: Sistematika, svoistva, primeneniya, Spravochnoe rukovodstvo, Izd. Stereotip, ed. A. P. Norden, Knizhnyi dom “LIBROKOM”, M., 2014, 296 pp.

[5] N. F. Chetverukhin, “Geometricheskie formy organicheskogo mira”, Matematicheskoe obrazovanie, 1930, no. 5, 2–14

[6] G. Grandi, Flores geometrici ex rhodanearum et claelarum descriptione resultants, Florentiae, 1728

[7] B. Habenicht, Analytische Form der Blätter, Quedlinburg, 1895 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:26.0688.03'>26.0688.03</ext-link>

[8] B. Habenicht, Flächengleichungen organischer und verwandter Formen, intuitiv behandelt, Quedlinburg, 1897 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:28.0578.02'>28.0578.02</ext-link>

[9] B. Habenicht, Beiträge zur mathematischen Begründung einer Morphologie der Blätter, O. Salle, Berlin, 1905 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:36.0655.01'>36.0655.01</ext-link>