Operator $Af = f\circ\varphi-f$ in tasks of mathematical competitions
Matematičeskoe obrazovanie, Tome 97 (2021) no. 1, pp. 23-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proposes a certain operator point of view on some plots and constructions typical for Olympiad problems. It is shown that the usual classical Olympiad problems (for example, such as calculating some infinite products, finding certain sums of series or solutions to some functional equations) are particular manifestations of the general concept under consideration.
@article{MO_2021_97_1_a4,
     author = {E. I. Znak},
     title = {Operator $Af = f\circ\varphi-f$ in tasks of mathematical competitions},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {23--30},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_97_1_a4/}
}
TY  - JOUR
AU  - E. I. Znak
TI  - Operator $Af = f\circ\varphi-f$ in tasks of mathematical competitions
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 23
EP  - 30
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_97_1_a4/
LA  - ru
ID  - MO_2021_97_1_a4
ER  - 
%0 Journal Article
%A E. I. Znak
%T Operator $Af = f\circ\varphi-f$ in tasks of mathematical competitions
%J Matematičeskoe obrazovanie
%D 2021
%P 23-30
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_97_1_a4/
%G ru
%F MO_2021_97_1_a4
E. I. Znak. Operator $Af = f\circ\varphi-f$ in tasks of mathematical competitions. Matematičeskoe obrazovanie, Tome 97 (2021) no. 1, pp. 23-30. http://geodesic.mathdoc.fr/item/MO_2021_97_1_a4/