From equality of Pythagoras to equality of Ptolemy
Matematičeskoe obrazovanie, Tome 97 (2021) no. 1, pp. 2-4.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a quadrilateral inscribed in a circle, the connection between Ptolemy's equality and the equality of Pythagoras is noted. A formula is obtained for the ratio of the diagonals of the quadrilateral, the lengthes of the diagonals are determined.
@article{MO_2021_97_1_a0,
     author = {V. K. Gavrilov},
     title = {From equality of {Pythagoras} to equality of {Ptolemy}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--4},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_97_1_a0/}
}
TY  - JOUR
AU  - V. K. Gavrilov
TI  - From equality of Pythagoras to equality of Ptolemy
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 2
EP  - 4
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_97_1_a0/
LA  - ru
ID  - MO_2021_97_1_a0
ER  - 
%0 Journal Article
%A V. K. Gavrilov
%T From equality of Pythagoras to equality of Ptolemy
%J Matematičeskoe obrazovanie
%D 2021
%P 2-4
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_97_1_a0/
%G ru
%F MO_2021_97_1_a0
V. K. Gavrilov. From equality of Pythagoras to equality of Ptolemy. Matematičeskoe obrazovanie, Tome 97 (2021) no. 1, pp. 2-4. http://geodesic.mathdoc.fr/item/MO_2021_97_1_a0/

[1] Ya. P. Ponarin, Elementarnaya geometriya, v. 1, MTsNMO, M., 2004

[2] S. A. Anischenko, Lektsii po geometrii, v. 1, Izdatelstvo KGPU, Krasnoyarsk, 1988

[3] , 2012 <ext-link ext-link-type='uri' href='https://nashaucheba.ru/v7370/referat-Teorema Ptolemeya-fail n1.doc'>https://nashaucheba.ru/v7370/referat-Teorema Ptolemeya-fail n1.doc</ext-link>

[4] A. P. Kiselev, Geometriya, ed. N. A. Glagolev, FIZMATLIT, M., 2004

[5] Yu. V. Prokhorov (gl. red.), BES Matematika, “Bolshaya Rossiiskaya entsiklopediya”, M., 1998

[6] V. K. Gavrilov, “Ot ravenstva Pifagora k ravenstvu Ptolemeya”, Informatsionnye tekhnologii v matematike i matematicheskom obrazovanii, Materialy VII Vserossiiskoi nauchno-metodicheskoi konferentsii s mezhdunarodnym uchastiem (Krasnoyarsk, 2018), 87–89