Second order surfaces as local of points in space
Matematičeskoe obrazovanie, Tome 100 (2021) no. 4, pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the locus of points in space, determined by metric connections with a certain set of pairs of points, lines and planes. It is shown that any non-degenerate surface of the second order can be considered as some locus of points in space, and not the only one.
@article{MO_2021_100_4_a7,
     author = {S. V. Zharov and L. B. Medvedeva},
     title = {Second order surfaces as local of points in space},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/}
}
TY  - JOUR
AU  - S. V. Zharov
AU  - L. B. Medvedeva
TI  - Second order surfaces as local of points in space
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 49
EP  - 56
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/
LA  - ru
ID  - MO_2021_100_4_a7
ER  - 
%0 Journal Article
%A S. V. Zharov
%A L. B. Medvedeva
%T Second order surfaces as local of points in space
%J Matematičeskoe obrazovanie
%D 2021
%P 49-56
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/
%G ru
%F MO_2021_100_4_a7
S. V. Zharov; L. B. Medvedeva. Second order surfaces as local of points in space. Matematičeskoe obrazovanie, Tome 100 (2021) no. 4, pp. 49-56. http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/

[1] P. S. Aleksandrov, Lektsii po analiticheskoi geometrii, Nauka, M., 1968, 912 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=244836'>244836</ext-link>

[2] L. S. Atanasyan, V. T. Bazylev, Geometriya, ucheb. posobie dlya studentov fiz-mat. fak-tov ped.in.-tov, v 2-kh ch., v. 1, Prosveschenie, M., 1986, 336 pp.

[3] V. T. Bazylev, K. I. Dunichev, V. P. Ivanitskaya, Geometriya, ucheb. posobie dlya studentov 1 kursa fiz-mat. fak-tov ped. in.-tov, v 2-kh t., v. 1, Prosveschenie, M., 1974, 352 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=433313'>433313</ext-link>

[4] V. A. Ilin, E. G. Poznyak, Analiticheskaya geometriya, v. 5, Nauka, M., 1968, 232 pp.

[5] G. D. Kim, L. V. Kritskov, Algebra i analiticheskaya geometriya, v 2-kh t., v. 1, Teoremy i zadachi, Planeta znanii, M., 2007, 470 pp.

[6] D. V. Kletenik, Sbornik zadach po analiticheskoi geometrii, Nauka, M., 1972, 240 pp.

[7] A. M. Lopshits, Analiticheskaya geometriya, Uchpedgiz, M., 1948, 588 pp.

[8] P. S. Modenov, Analiticheskaya geometriya, Izd-vo MGU, M., 1969, 698 pp.

[9] P. S. Modenov, A. S. Parkhomenko, Sbornik zadach po analiticheskoi geometrii, uchebnoe posobie dlya studentov mekhaniko-matematicheskikh i fizicheskikh spetsialnostei, Nauka, M., 1976, 384 pp.

[10] M. M. Postnikov, Analiticheskaya geometriya, Nauka, M., 1973, 752 pp.

[11] D. I. Perepelkin, “Poverkhnosti vtorogo poryadka kak geometricheskie mesta tochek”, Matem. prosv., 1936, no. 5, 49–55

[12] V. V. Fedorchuk, Kurs analiticheskoi geometrii i lineinoi algebry, ucheb. posobie, Izd-vo MGU, M., 1990, 328 pp.

[13] N. F. Chetverukhin, Proektivnaya geometriya, 6-e izdanie, Uchpedgiz, M., 1953, 350 pp.

[14] H. F. Baker, Principles of Geometry, in 3 vol., v. III, Solid Geometry, Cambridge University Press, 1923, 260 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2857520'>2857520</ext-link>

[15] W. E. Jenner, Rudiments of algebraic geometry, Oxford University Press, New York, 1963, 106 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=147477'>147477</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0111.17706'>0111.17706</ext-link>

[16] Klein Felix, Vorlesungen über Höhere Geometrie, Springer, Berlin, 1926, 406 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=226476'>226476</ext-link>

[17] Reye Theodore, Die Geometrie der Lage, Leipzig, 1899, 254 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:29.0461.09'>29.0461.09</ext-link>

[18] Schröter Heinrich, Theorie der Oberflächen zweiter Ordnung und der Raumkurven dritter Ordnung, Leipzig, 1880, 720 pp.

[19] J. A. Todd, Projective and analytical geometry, Sir Isaak Pitman, London, 1947, 290 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=24624'>24624</ext-link>

[20] R. Sturm, Die Gebilde ersten und zweiten Grades der Liniengeometrie, im 3 Bd., v. 2, Die Strahlencomplexe Zweiter Grades, D.G.Teubner, Leipzig, 1893, 518 pp.