Second order surfaces as local of points in space
Matematičeskoe obrazovanie, Tome 100 (2021) no. 4, pp. 49-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the locus of points in space, determined by metric connections with a certain set of pairs of points, lines and planes. It is shown that any non-degenerate surface of the second order can be considered as some locus of points in space, and not the only one.
@article{MO_2021_100_4_a7,
     author = {S. V. Zharov and L. B. Medvedeva},
     title = {Second order surfaces as local of points in space},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/}
}
TY  - JOUR
AU  - S. V. Zharov
AU  - L. B. Medvedeva
TI  - Second order surfaces as local of points in space
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 49
EP  - 56
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/
LA  - ru
ID  - MO_2021_100_4_a7
ER  - 
%0 Journal Article
%A S. V. Zharov
%A L. B. Medvedeva
%T Second order surfaces as local of points in space
%J Matematičeskoe obrazovanie
%D 2021
%P 49-56
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/
%G ru
%F MO_2021_100_4_a7
S. V. Zharov; L. B. Medvedeva. Second order surfaces as local of points in space. Matematičeskoe obrazovanie, Tome 100 (2021) no. 4, pp. 49-56. http://geodesic.mathdoc.fr/item/MO_2021_100_4_a7/