On points of multiple intersections of the diagonals of a regular polygon
Matematičeskoe obrazovanie, Tome 100 (2021) no. 4, pp. 9-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, by means of computational mathematics, $N$-gons are analyzed for some values of $N$ from 8 to 30 and configurations of multiple intersection points of their diagonals are found.
@article{MO_2021_100_4_a3,
     author = {A. M. Iglitsky},
     title = {On points of multiple intersections of the diagonals of a regular polygon},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {9--18},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2021_100_4_a3/}
}
TY  - JOUR
AU  - A. M. Iglitsky
TI  - On points of multiple intersections of the diagonals of a regular polygon
JO  - Matematičeskoe obrazovanie
PY  - 2021
SP  - 9
EP  - 18
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2021_100_4_a3/
LA  - ru
ID  - MO_2021_100_4_a3
ER  - 
%0 Journal Article
%A A. M. Iglitsky
%T On points of multiple intersections of the diagonals of a regular polygon
%J Matematičeskoe obrazovanie
%D 2021
%P 9-18
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2021_100_4_a3/
%G ru
%F MO_2021_100_4_a3
A. M. Iglitsky. On points of multiple intersections of the diagonals of a regular polygon. Matematičeskoe obrazovanie, Tome 100 (2021) no. 4, pp. 9-18. http://geodesic.mathdoc.fr/item/MO_2021_100_4_a3/

[1] A. M. Iglitskii, “Dve zametki po geometrii”, Matematicheskoe obrazovanie, 2019, no. 1 (89), 13–20

[2] A. M. Iglitskii, “O netrivialnykh sluchayakh peresecheniya diagonalei pravilnogo mnogougolnika na ego osi simmetrii”, Matematicheskoe obrazovanie, 2020, no. 1 (93), 28–35

[3] B. Poonen, M. Rubinstein, “Society for Industrial and Applied Mathematics”, SIAM Journal on Discrete Mathematics, 11:1 (1998), 135–156 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/S0895480195281246'>10.1137/S0895480195281246</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1612877'>1612877</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0913.51005'>0913.51005</ext-link>