Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2020_96_4_a5, author = {N. V. Ilyushechkin}, title = {Hermite interpolation polynomial for holomorphic functions in a simply connected domain}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {35--41}, publisher = {mathdoc}, volume = {96}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/} }
TY - JOUR AU - N. V. Ilyushechkin TI - Hermite interpolation polynomial for holomorphic functions in a simply connected domain JO - Matematičeskoe obrazovanie PY - 2020 SP - 35 EP - 41 VL - 96 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/ LA - ru ID - MO_2020_96_4_a5 ER -
N. V. Ilyushechkin. Hermite interpolation polynomial for holomorphic functions in a simply connected domain. Matematičeskoe obrazovanie, Tome 96 (2020) no. 4, pp. 35-41. http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/
[1] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, Fizmatgiz, M., 1962 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=177493'>177493</ext-link>
[2] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985
[3] D. K. Faddeev, Lektsii po algebre, Nauka, M., 1984 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=784426'>784426</ext-link>
[4] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1985
[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=65520'>65520</ext-link>
[6] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=47401'>47401</ext-link>
[7] N. V. Ilyushechkin, “O chastnykh proizvodnykh simmetricheskikh mnogochlenov po elementarnym mnogochlenam”, Matematicheskoe obrazovanie, 2019, no. 3(91), 18–21