Hermite interpolation polynomial for holomorphic functions in a simply connected domain
Matematičeskoe obrazovanie, Tome 96 (2020) no. 4, pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple formulas are found for the coefficients of the Hermite interpolation polynomial if the function being approximated is holomorphic in a simply connected domain.
Keywords: holomorphic function, simply connected region, symmetric expression.
Mots-clés : Hermite interpolation polynomial
@article{MO_2020_96_4_a5,
     author = {N. V. Ilyushechkin},
     title = {Hermite interpolation polynomial for holomorphic functions in a simply connected domain},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {96},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/}
}
TY  - JOUR
AU  - N. V. Ilyushechkin
TI  - Hermite interpolation polynomial for holomorphic functions in a simply connected domain
JO  - Matematičeskoe obrazovanie
PY  - 2020
SP  - 35
EP  - 41
VL  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/
LA  - ru
ID  - MO_2020_96_4_a5
ER  - 
%0 Journal Article
%A N. V. Ilyushechkin
%T Hermite interpolation polynomial for holomorphic functions in a simply connected domain
%J Matematičeskoe obrazovanie
%D 2020
%P 35-41
%V 96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/
%G ru
%F MO_2020_96_4_a5
N. V. Ilyushechkin. Hermite interpolation polynomial for holomorphic functions in a simply connected domain. Matematičeskoe obrazovanie, Tome 96 (2020) no. 4, pp. 35-41. http://geodesic.mathdoc.fr/item/MO_2020_96_4_a5/

[1] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, Fizmatgiz, M., 1962 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=177493'>177493</ext-link>

[2] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985

[3] D. K. Faddeev, Lektsii po algebre, Nauka, M., 1984 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=784426'>784426</ext-link>

[4] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1985

[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=65520'>65520</ext-link>

[6] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=47401'>47401</ext-link>

[7] N. V. Ilyushechkin, “O chastnykh proizvodnykh simmetricheskikh mnogochlenov po elementarnym mnogochlenam”, Matematicheskoe obrazovanie, 2019, no. 3(91), 18–21