Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2020_96_4_a4, author = {P. S. Karavaev and N. V. Mastinen}, title = {Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {31--34}, publisher = {mathdoc}, volume = {96}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2020_96_4_a4/} }
TY - JOUR AU - P. S. Karavaev AU - N. V. Mastinen TI - Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes JO - Matematičeskoe obrazovanie PY - 2020 SP - 31 EP - 34 VL - 96 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MO_2020_96_4_a4/ LA - ru ID - MO_2020_96_4_a4 ER -
%0 Journal Article %A P. S. Karavaev %A N. V. Mastinen %T Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes %J Matematičeskoe obrazovanie %D 2020 %P 31-34 %V 96 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MO_2020_96_4_a4/ %G ru %F MO_2020_96_4_a4
P. S. Karavaev; N. V. Mastinen. Intersection point of median, bisector, and height of a triangle as a basis of didactic material for repeating planimetry themes. Matematičeskoe obrazovanie, Tome 96 (2020) no. 4, pp. 31-34. http://geodesic.mathdoc.fr/item/MO_2020_96_4_a4/
[1] V. V, Prasolov, Zadachi po planimetrii, uchebnoe posobie, 5-e izdanie., ispr. i dop., MTsNMO, OAO “Moskovskie uchebniki”, M., 2006, 640 pp.
[2] “Zadachi po matematike i fizike”, Kvant, 1970, no. 10, 37
[3] “Zadachi po matematike i fizike”, Kvant, 1997, no. 1, 24
[4] “Zadachi po matematike i fizike”, Kvant, 1997, no. 4, 20—21
[5] A. D. Blinkov (sostavitel), Moskovskie regaty, v. 2, 2006–2013, MTsNMO, Moskva, 2014, 320 pp.
[6] A. A. Zaslavskii, Olimpiady imeni I.F. Sharygina (2010—2014), MTsNMO, Moskva, 2015, 168 pp.
[7] Informatsionnoe soobschenie o provedenii okruzhnogo etapa Moskovskoi regionalnoi olimpiady po matematike v 2007/2008 uchebnom godu. Olimpiady dlya shkolnikov, <ext-link ext-link-type='uri' href='http://olympiads.mccme.ru/mmo/okrug/okr08.htm'>http://olympiads.mccme.ru/mmo/okrug/okr08.htm</ext-link>
[8] V. I. Sedakova, “Formirovanie issledovatelskikh kachestv u shkolnikov v protsesse resheniya matematicheskikh zadach”, Vestnik Surgutskogo gosudarstvennogo pedagogicheskogo universiteta, 2010, no. 1(8), 74–81
[9] Encyclopedia of Triangle Centers, <ext-link ext-link-type='uri' href='https://faculty.evansville.edu/ck6/encyclopedia/ETC.html'>https://faculty.evansville.edu/ck6/encyclopedia/ETC.html</ext-link>
[10] Zadachi <ext-link ext-link-type='uri' href='http://problems.ru/view_problem_details_new.php?id=53456'>http://problems.ru/view_problem_details_new.php?id=53456</ext-link>
[11] Stack Exchange Network <ext-link ext-link-type='uri' href='https://math.stackexchange.com/questions/914662/the-concurrence-of-angle-bisector-median-and-altitude-in-an-acute-triangle'>https://math.stackexchange.com/questions/914662/the-concurrence-of-angle-bisector-median-and-altitude-in-an-acute-triangle</ext-link>
[12] “Zadachi po matematike i fizike”, Kvant, 1971, no. 7, 31–32
[13] N. B. Vasilev, Zadachi Vsesoyuznykh matematicheskikh olimpiad, Nauka, M., 1988, 288 pp.
[14] Math is fun forum, <ext-link ext-link-type='uri' href='http://www.mathisfunforum.com/viewtopic.php?pid=414769#p414769'>http://www.mathisfunforum.com/viewtopic.php?pid=414769#p414769</ext-link>