Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2020_94_2_a5, author = {N. N. Osipov}, title = {Computer assisted proofs}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {42--47}, publisher = {mathdoc}, volume = {94}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2020_94_2_a5/} }
N. N. Osipov. Computer assisted proofs. Matematičeskoe obrazovanie, Tome 94 (2020) no. 2, pp. 42-47. http://geodesic.mathdoc.fr/item/MO_2020_94_2_a5/
[1] Vinberg E.B., Kurs algebry, Elektronnoe izdanie, MTsNMO, M., 2014
[2] Leng S., Algebraicheskie chisla, Mir, M., 1966.
[3] Lidl R., Niderraiter G., Konechnye polya, V 2-kh t., Mir, M., 1988
[4] Esayan A.R., Dobrovolskii N.N., “Kompyuternoe dokazatelstvo gipotezy o tsentroidakh”, Chebyshevskii sbornik, 18:1 (2017), 73–91 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1373.51009'>1373.51009</ext-link>
[5] Esayan A.R., Yakushin A.V., “Eksperimentalnoe obosnovanie gipotez v tsentroidakh”, Chebyshevskii sbornik, 18:1 (2017), 92–108 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1373.51010'>1373.51010</ext-link>
[6] Kayumov O.R., Kashirina K.E., “Elementarnoe dokazatelstvo gipotezy Shteingarttsa dlya tsentroidakh”, Matematicheskoe obrazovanie, 2015, no. 3, 3–13
[7] Osipov N.N., “O mekhanicheskom dokazatelstve planimetricheskikh teorem ratsionalnogo tipa tsentroidakh”, Programmirovanie, 2014, no. 2, 41–50
[8] Osipov N.N., “Kompyuternoe dokazatelstvo teoremy ob intsentrakh tsentroidakh”, Matematicheskoe prosveschenie. Ser. 3, 18 (2014), 205–216, MTsNMO, M.
[9] Osipov N.N., “O vychislenii konechnykh trigonometricheskikh tsentroidakh”, Matematicheskoe prosveschenie. Ser. 3, 23 (2019), 174–208., MTsNMO, M.
[10] Chou S.-C., Mechanical Geometry Theorem Proving, D. Reidel Publishing Company, Dordrecht, 1988. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0661.14037'>0661.14037</ext-link>
[11] Osipov N.N., Kytmanov A.A., “An algorithm for solving a family of diophantine equations of degree four which satisfy Runge's condition”, Kompyuternaya algebra, materialy Mezhdunarodnoi konferentsii (Moskva, 17–21 iyunya 2019 g.), eds. S.A. Abramov, L.A. Sevastyanov, RUDN, M., 2019, 154–160
[12] Osipov N.N., Dalinkevich S.D., “An algorithm for solving a quartic diophantine equation satisfying Runge's condition”, Computer Algebra in Scientific Computing, CASC 2019, Lecture Notes in Computer Science, 11661, Springer, 2019, 377–392 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-030-26831-2_25'>10.1007/978-3-030-26831-2_25</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:07195036'>07195036</ext-link>