The modern generalizations of the Ptolemy's theorem
Matematičeskoe obrazovanie, Tome 94 (2020) no. 2, pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article examines the metric properties of a tetron. In particular case a tetron is a triangle, flat or spatial quadrangle, and also a tetrahedron. The main theorem is proved about the connection of the lengths of the sides, the magnitudes of the plane angles and the magnitude of the dihedral angle of the tetron is proved. Many remarkable theorems about triangles, quadrangles, and tetrahedra are the corollaries of this theorem. Special attention given to equihedral tetrahedra.
Mots-clés : tetron
Keywords: Ptolemy's theorem, triangle, flat and spatial quadrilateral, equilateral tetrahedron.
@article{MO_2020_94_2_a1,
     author = {N. S. Astapov and I. S. Astapov},
     title = {The modern generalizations of the {Ptolemy's} theorem},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {18--28},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2020_94_2_a1/}
}
TY  - JOUR
AU  - N. S. Astapov
AU  - I. S. Astapov
TI  - The modern generalizations of the Ptolemy's theorem
JO  - Matematičeskoe obrazovanie
PY  - 2020
SP  - 18
EP  - 28
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2020_94_2_a1/
LA  - ru
ID  - MO_2020_94_2_a1
ER  - 
%0 Journal Article
%A N. S. Astapov
%A I. S. Astapov
%T The modern generalizations of the Ptolemy's theorem
%J Matematičeskoe obrazovanie
%D 2020
%P 18-28
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2020_94_2_a1/
%G ru
%F MO_2020_94_2_a1
N. S. Astapov; I. S. Astapov. The modern generalizations of the Ptolemy's theorem. Matematičeskoe obrazovanie, Tome 94 (2020) no. 2, pp. 18-28. http://geodesic.mathdoc.fr/item/MO_2020_94_2_a1/

[1] Shteingauz G., Zadachi i razmyshleniya, Mir, M., 1972.

[2] Littsman V., Gde oshibka?, Fizmatgiz, M., 1962

[3] ShibinskiiV.M., Primery i kontrprimery v kurse matematicheskogo analiza, Vyssh. shk., M., 2007

[4] Zadachi i uprazhneniya po matematicheskomu analizu dlya vtuzov, ed. B.P. Demidovicha, Astrel, AST, M., 2001

[5] Demidovich B.P., Sbornik zadach i uprazhneniipo matematicheskomu analizu, Astrel, AST, M., 2002

[6] Filippov A.F., Sbornik zadach po differentsialnym uravneniyam, Nauka, M., 1973

[7] Boyarchuk A.K. Golovach G.P., Spravochnoe posobie po vysshei matematike, v. 5, Differentsialnye uravneniya v primerakh i zadachakh, URSS, M., 1999.

[8] Kokster G.S.M., Greittser S.L., Novye vstrechi s geometriei, Nauka, M., 1978

[9] Prasolov V.V., Zadachi po planimetrii, v. II, Biblioteka matematicheskogo kruzhka, 16, Nauka, M., 1986

[10] Prasolov V.V., Zadachi i teoremy lineinoi algebry, Nauka, Fizmatlit, M., 1996

[11] Astapov N.S., Zhukov A.V., “Zamechatelnyichetyrekh vershinnik”, Kvant, 1996, no. 1, 45—47

[12] ShklyarskiiD.O., Chentsov N.N., Yaglom I.M., Izbrannye zadachi i teoremy planimetrii, Biblioteka matematicheskogo kruzhka, 2, 2, pererabotannoe i dopolnennoe, Nauka, M., 1967

[13] Bakelman I.Ya., Inversiya, Populyarnye lektsii po matematike, 44, Nauka, M., 1966

[14] A.A. Zaslavskii, A. B. Skopenkov, M. B. Skopenkov (red.), Elementy matematiki v zadachakh. Cherez olimpiady i kruzhki — k professii, MTsNMO, M., 2018

[15] Astapov N.S., “Teorema o chetyrekhvershinnike”, Matematicheskoe obrazovanie, 2000, no. 2(13), 22—28

[16] Astapov N.S., Noland N.C., “The Remarkable Tetron”, American Mathematical Monthly, 108:4 (2001), 368—370 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00029890.2001.11919763'>10.1080/00029890.2001.11919763</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0981.51017'>0981.51017</ext-link>

[17] Strashevich S., Brovkin E., Polskie matematicheskie olimpiady, Mir, M., 1978

[18] Prasolov V.V., Sharygin I.F., Zadachi po stereometrii, Biblioteka matematicheskogo kruzhka, 19, Nauka, Fizmatlit, M., 1989

[19] Gashkov S.B., Geometricheskie neravenstva. Putevoditel v zadachakh i teoremakh, Librokom, M., 2014

[20] Yaglom I.M., Geometricheskie preobrazovaniya, v. I, Gos. izd-vo tekhn.-teoret. literatury, M., 1956

[21] Efremov D., Novaya geometriya treugolnika, Tipografiya M. Shpentsera, Odessa, 1902

[22] Shay Gueron, “Two Applications of the Generalized Ptolemy Theorem”, American Mathematical Monthly, 109:4. (2002), 362–370 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00029890.2002.11920897'>10.1080/00029890.2002.11920897</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1031.51011'>1031.51011</ext-link>