The trajectory method in combinatorics and probability theory
Matematičeskoe obrazovanie, Tome 92 (2019) no. 4, pp. 43-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve a combinatorial or probabilistic problem, it is often advisable to use its geometric interpretation, reducing the problem to counting the number of paths (trajectories), with certain properties. This is the trajectory method.
Keywords: combinatorial problems, probabilistic problems, trajectory method, combinatorial structures, geometric interpretation of structures.
@article{MO_2019_92_4_a4,
     author = {N. A. Rashevsky},
     title = {The trajectory method in combinatorics and probability theory},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {43--57},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/}
}
TY  - JOUR
AU  - N. A. Rashevsky
TI  - The trajectory method in combinatorics and probability theory
JO  - Matematičeskoe obrazovanie
PY  - 2019
SP  - 43
EP  - 57
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/
LA  - ru
ID  - MO_2019_92_4_a4
ER  - 
%0 Journal Article
%A N. A. Rashevsky
%T The trajectory method in combinatorics and probability theory
%J Matematičeskoe obrazovanie
%D 2019
%P 43-57
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/
%G ru
%F MO_2019_92_4_a4
N. A. Rashevsky. The trajectory method in combinatorics and probability theory. Matematičeskoe obrazovanie, Tome 92 (2019) no. 4, pp. 43-57. http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/

[1] Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I., Algebra i matematicheskii analiz dlya 11 klassa, Uchebnoe posobie dlya uchaschikhsya shkol i klassov s uglublennym izucheniem matematiki, 6, Prosveschenie, M., 1998

[2] Baranov V.I., Stechkin B.S., Ekstremalnye kombinatornye zadachi i ikh prilozheniya, Nauka, M., 1989

[3] Vilenkin N.Ya., Kombinatorika, Nauka, M, 1969. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=241306'>241306</ext-link>

[4] Gnedenko B.V., Vvedenie v spetsialnost matematika, Nauka, M., 1991 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1357898'>1357898</ext-link>

[5] Gnedenko B.V., Kurs teorii veroyatnostei, 6 pererabotannoe i dopolnennoe, Nauka, M., 1988 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=45321'>45321</ext-link>

[6] Gnedenko B.V., Korolyuk V.S., “O maksimalnom raskhozhdenii dvukh empiricheskikh raspredelenii”, Doklady AN SSSR, 80:4 (1951), 525–528. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0044.13602'>0044.13602</ext-link>

[7] Ezhov I.I., Skorokhod A.V., Yadrenko M.I., Elementy kombinatoriki, Nauka, M., 1977

[8] Erusalimskii Ya.M., “2- i 3-puti na grafe-reshetke i kombinatornye tozhdestva”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2017, no. 1, 25–30

[9] Dorogovtsev A.Ya. i dr., Teoriya veroyatnostei, Sbornik zadach, ed. A.V. Skorokhoda, Vyscha shkola, Kiev, 1980 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3076550'>3076550</ext-link>

[10] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, GIIL, M., 1947

[11] Chashkin A.V., Lektsii po diskretnoi matematike, Uchebnoe posobie, MGU Mekhmat, M., 2007

[12] Shiryaev A.N., Veroyatnost, Nauka, M., 1980.

[13] Evnin A.Yu., “Dve zametki po kombinatorike”, Matematicheskoe obrazovanie, 2000, no. 3(14), 27–34

[14] Yaglom A.M., Yaglom I.M., Neelementarnye zadachi v elementarnom izlozhenii, «Biblioteka matematicheskogo kruzhka», GTTI, M., 1954 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=70671'>70671</ext-link>

[15] Rashevskii N.A.