The trajectory method in combinatorics and probability theory
Matematičeskoe obrazovanie, Tome 92 (2019) no. 4, pp. 43-57

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve a combinatorial or probabilistic problem, it is often advisable to use its geometric interpretation, reducing the problem to counting the number of paths (trajectories), with certain properties. This is the trajectory method.
Keywords: combinatorial problems, probabilistic problems, trajectory method, combinatorial structures, geometric interpretation of structures.
@article{MO_2019_92_4_a4,
     author = {N. A. Rashevsky},
     title = {The trajectory method in combinatorics and probability theory},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {43--57},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/}
}
TY  - JOUR
AU  - N. A. Rashevsky
TI  - The trajectory method in combinatorics and probability theory
JO  - Matematičeskoe obrazovanie
PY  - 2019
SP  - 43
EP  - 57
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/
LA  - ru
ID  - MO_2019_92_4_a4
ER  - 
%0 Journal Article
%A N. A. Rashevsky
%T The trajectory method in combinatorics and probability theory
%J Matematičeskoe obrazovanie
%D 2019
%P 43-57
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/
%G ru
%F MO_2019_92_4_a4
N. A. Rashevsky. The trajectory method in combinatorics and probability theory. Matematičeskoe obrazovanie, Tome 92 (2019) no. 4, pp. 43-57. http://geodesic.mathdoc.fr/item/MO_2019_92_4_a4/