Improved pixel estimates of measures of plane sets as
Matematičeskoe obrazovanie, Tome 92 (2019) no. 4, pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper formulates an approach to obtaining a pixel estimate for a measure of a plane set (area of a figure) with an estimate of its error. The approach is presented by the authors as a modern alternative methodical approach to the introduction of the concept of “Area of a figure” in the systematic course of the geometry of a basic common school. The approach is consistent with the cognitive patterns of modern “IT-oriented” students and successfully combines deep set-theoretical foundations and simple and visual geometric images. The developed approach can be realized in the form of laboratory works in mathematics, either in “manual” mode (on squired paper) or by using appropriate computer procedures (on the monitor screen). The approach is simple in explanation and application, and is successfully used by the authors in teaching modern IT-oriented students-mathematicians at a pedagogical university and college students in the framework of coordinated courses of mathematics and informatics. The first part of the work analyzes the approaches of textbooks on the geometry of various groups of authors to the implementation of the concept of “Area of a figure” and associated with it; the basics are developed and tested of building improved pixel estimates of areas of plane figures. It is shown that the statistical method can be “experimentally” clearly confirmed the validity of the key formula for the further presentation: $S=a^2$ for the area of square.
Keywords: geometry training, figure area, statistical method, improved pixel estimation of a flat measure.
@article{MO_2019_92_4_a1,
     author = {V. Yu. Bodryakov and A. A. Bykov},
     title = {Improved pixel estimates of measures of plane sets as},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2019_92_4_a1/}
}
TY  - JOUR
AU  - V. Yu. Bodryakov
AU  - A. A. Bykov
TI  - Improved pixel estimates of measures of plane sets as
JO  - Matematičeskoe obrazovanie
PY  - 2019
SP  - 17
EP  - 29
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2019_92_4_a1/
LA  - ru
ID  - MO_2019_92_4_a1
ER  - 
%0 Journal Article
%A V. Yu. Bodryakov
%A A. A. Bykov
%T Improved pixel estimates of measures of plane sets as
%J Matematičeskoe obrazovanie
%D 2019
%P 17-29
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2019_92_4_a1/
%G ru
%F MO_2019_92_4_a1
V. Yu. Bodryakov; A. A. Bykov. Improved pixel estimates of measures of plane sets as. Matematičeskoe obrazovanie, Tome 92 (2019) no. 4, pp. 17-29. http://geodesic.mathdoc.fr/item/MO_2019_92_4_a1/

[1] Mestetskii L.M., Matematicheskie metody raspoznavaniya obrazov, MGU, M., 2004, 85 pp. <ext-link ext-link-type='doi' href='http://www.ccas.ru/frc/papers/mestetskii04course.pdf'>http://www.ccas.ru/frc/papers/mestetskii04course.pdf</ext-link>

[2] Forsait D.A., Pons D., Kompyuternoe zrenie. Sovremennyi podkhod, Computer Vision: A Modern Approach, Vilyams, M., 2004, 928 pp.

[3] Lepskii A.E., Bronevich A.G., Matematicheskie metody raspoznavaniya obrazov, Izd-vo TTI YuFU, Taganrog, 2009, 155 pp. <ext-link ext-link-type='uri' href='http://window.edu.ru/resource/800/73800/files/lect_Lepskiy_Bronevich_pass.pdf'>http://window.edu.ru/resource/800/73800/files/lect_Lepskiy_Bronevich_pass.pdf</ext-link>

[4] Fomin Ya.A., Raspoznavanie obrazov: teoriya i primeneniya, FAZIS, M., 2012, 429 pp.

[5] Atanasyan L.S., Butuzov V.F., Kadomtsev S.B., Poznyak E.G., Yudina I.I., Geometriya. 7–9 klassy, ucheb. dlya obscheobrazovat. uchrezhdenii, 20, Prosveschenie, M., 2010, 384 pp.

[6] Atanasyan L.S., Butuzov V.F., Kadomtsev S.B., Kiseleva L.S., Poznyak E.G., Geometriya. 10–11 klassy: ucheb. dlya obscheobrazovat. uchrezhdenii: bazovyi i profil. urovni, 22, Prosveschenie, M., 2013, 255 pp.

[7] Shirikova T.S., Metodika obucheniya uchaschikhsya osnovnoi shkoly dokazatelstvu teorem pri izuchenii geometrii s ispolzovaniem Geogebra, Dissertatsiya na soiskanie stepeni kandidata pedagogicheskikh nauk, S(A)FU im. M.V. Lomonosova, Arkhangelsk, 2014, 250 pp. <ext-link ext-link-type='uri' href='http://xn--c1aym9b.xn--p1ai/images/d/df/Shyrikova2014.pdf'>http://yagpu.rf/images/d/df/Shyrikova2014.pdf</ext-link>

[8] Teaching and learning geometry 11–19, Report of a Royal Society, Joint mathematical council working group <ext-link ext-link-type='doi' href='https://royalsociety.org/topics-policy/publications/2001/teaching-geometry/'>https://royalsociety.org/topics-policy/publications/2001/teaching-geometry/</ext-link>

[9] Mason J., “Questions about geometry”, Teaching and Learning Mathematics: A Reader, Holder and Stoughton, eds. D. Pimm, E. Love, London, 1991, 77–99

[10] Marrades R., Gutierrez A., “Proofs produced by secondary school students learning geometry in a dynamic computer environment”, Educational studies in mathematics, 44, Kluwer Ac. Publ., Netherlands, 2001, 87–125 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1012785106627'>10.1023/A:1012785106627</ext-link>

[11] Constantinos Ch., Mousoulides N., Pittalis M., Pitta-Panzani D., “Proofs through exploration in dynamic geometry environments”, International Journal of Science and Mathematics Education, 2004, 339–352

[12] Hanna G., “Proof, explanation and exploration: An overview”, Educational Studies in Mathematics, 44, Kluwer Ac. Publ., Netherlands, 2001, 5–23 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1012737223465'>10.1023/A:1012737223465</ext-link>

[13] Leikin R., Grossman D., “Teachers modify geometry problems: from proof to investigation”, Educational Studies in Mathematics, 82, Springer Science + Business Media, Dordrecht, 2012, 515–531 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10649-012-9460-4'>10.1007/s10649-012-9460-4</ext-link>

[14] Adamovich M.A., Bodryakov V.Yu., Lemesh A.A., Fomina N.G., “Problema preemstvennosti shkolnoi i vysshei matematiki pri izuchenii temy «Predel posledovatelnosti»”, Matematika v shkole, 2009, no. 9, 45–50

[15] Bodryakov V.Yu., Fomina N.G., “O kachestve matematicheskoi podgotovki uchaschikhsya v komplekse «shkola–vuz»: vzglyad s pozitsii rabotnika vysshego pedagogicheskogo obrazovaniya”, Matematika v shkole, 2010, no. 2, 56–62

[16] Aksenova O.V., Bodryakov V.Yu., “Problemy kachestva matematicheskoi podgotovki buduschikh uchitelei informatiki v kontekste fundamentalizatsii sovremennogo obrazovaniya”, Pedagogicheskoe obrazovanie v Rossii, 2016, no. 7, 125–130

[17] Ryzhik V.I., “Chetvertaya liniya. Otsenki v matematike i v matematicheskom obrazovanii”, Matematika v shkole, 2018, no. 7, 43–56

[18] Pogorelov A.V., Geometriya. 7–9 kl., Uchebnik dlya obscheobrazovat. organizatsii, Prosveschenie, M., 2014, 240 pp.

[19] Smirnova I.M., Smirnov V.A., Geometriya. 7–9 kl., ucheb. dlya obscheobrazovat. uchrezhdenii, Mnemozina, M., 2007, 376 pp.

[20] Gleizer G.D., Geometriya, ucheb. dlya 7 kl, Binom. Laboratoriya znanii, M., 2011, 149 pp.

[21] Aleksandrov A.D., Verner A.L., Ryzhik I.I., Geometriya. 9 kl., ucheb. dlya obscheobrazovat. organizatsii, Prosveschenie, M., 2014, 180 pp.

[22] Butuzov V.F., Kadomtsev S.B., Prasolov V.V., Geometriya 7 kl., ucheb. dlya obscheobrazovat. uchrezhdenii (MGU–shkole), ed. Sadovnichii V.A., Prosveschenie, M., 2018, 127 pp.; Геометрия 8 кл., 175 с.; Геометрия 9 кл., 146 с.

[23] Sharygin I.F., Geometriya. 7–9 kl., ucheb. dlya obscheobrazovat. uchrezhdenii, Drofa, M., 2018, 464 pp.

[24] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=435771'>435771</ext-link>

[25] Bodryakov V.Yu., “Teoriya mnozhestv: Prakticheskie aspekty ispolzovaniya”, Matematika. Vse dlya uchitelya, 2013, no. 9, 2–10

[26] Bodryakov V.Yu., Bykov A.A., “Uluchshaemye pikselnye IT-otsenki mer ploskikh mnozhestv”, Sostoyanie i perspektivy razvitiya IT-obrazovaniya, sbornik dokladov i nauchnykh statei Vserossiiskoi nauchno-prakticheskoi konferentsii, Izd-vo Chuvashskogo universiteta, Cheboksary, 2019, 158–167, 468 pp.

[27] Imaikin V.M., “O teme «Dlina, ploschad, ob'em» v starshikh klassakh gumanitarnogo profilya”, Matematicheskoe obrazovanie, 2014, no. 4(72), 16–28

[28] Kuzovkova A.A., Mamalyga R.F., Bodryakov V.Yu., “Formirovanie poznavatelnogo interesa k matematike u obuchayuschikhsya v klassakh gumanitarno-esteticheskoi napravlennosti”, Matematika v shkole, 2018, no. 2, 35–42

[29] Gmurman V.E., Teoriya veroyatnostei i matematicheskaya statistika, Ucheb. posobie, Vysshee obrazovanie, M., 2006, 479 pp.

[30] Bodryakov V.Yu., Fomina N.G., “Geometricheskaya veroyatnost kak effektivnyi menedzher mezhpredmetnykh svyazei shkolnogo kursa matematiki”, Matematika v shkole, 2010, no. 8, 42–51

[31] Aksenova O.V., Bodryakov V.Yu., “Laboratornye raboty po matematike s primeneniem IKT kak instrument formirovaniya issledovatelskikh umenii studentov pedagogicheskogo vuza”, Sbornik dokladov i nauchnykh statei Vserossiiskoi nauchno-prakticheskoi konferentsii «Sostoyanie i perspektivy razvitiya IT-obrazovaniya», posvyaschennoi 50-letiyu Chuvashskogo gosudarstvennogo universiteta im. I.N. Ulyanova (Cheboksary, 16–18 noyabrya 2017 g.), Izdatelstvo Chuvashskogo gosudarstvennogo universiteta, Cheboksary, 2018, 175–181, 520 pp.

[32] Aksenova O.V., Bodryakov V.Yu., “Naturnyi eksperiment s primeneniem sredstv informatsionno-kommunikatsionnykh tekhnologii i mobilnykh ustroistv kak instrument formirovaniya issledovatelskikh umenii studentov”, Vestnik RUDN. Seriya: Informatizatsiya obrazovaniya, 15:4 (2018), 363–372

[33] Bodryakov V.Yu., “Kognitivno-deyatelnostnyi podkhod v obuchenii matematike”, Kognitivnye issledovaniya v obrazovanii [Elektronnyi resurs], sbornik nauchnykh statei (Uralskii gosudarstvennyi pedagogicheskii universitet), eds. S.L. Fomenko, N.E. Popova, Ekaterinburg, 2019, 101–108, 435 pp.