On partial derivatives of symmetric polynomials with respect to elementary polynomials
Matematičeskoe obrazovanie, Tome 91 (2019) no. 3, pp. 18-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some simple formulas for partial derivatives of symmetric polynomials with respect to elementary polynomials are derived.
Keywords: symmetric polynomials, elementary symmetric polynomials, Schur polynomials, Jacobi-Trudy formula.
@article{MO_2019_91_3_a2,
     author = {N. V. Ilyushechkin},
     title = {On partial derivatives of symmetric polynomials  with respect to elementary polynomials},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {18--21},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2019_91_3_a2/}
}
TY  - JOUR
AU  - N. V. Ilyushechkin
TI  - On partial derivatives of symmetric polynomials  with respect to elementary polynomials
JO  - Matematičeskoe obrazovanie
PY  - 2019
SP  - 18
EP  - 21
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2019_91_3_a2/
LA  - ru
ID  - MO_2019_91_3_a2
ER  - 
%0 Journal Article
%A N. V. Ilyushechkin
%T On partial derivatives of symmetric polynomials  with respect to elementary polynomials
%J Matematičeskoe obrazovanie
%D 2019
%P 18-21
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2019_91_3_a2/
%G ru
%F MO_2019_91_3_a2
N. V. Ilyushechkin. On partial derivatives of symmetric polynomials  with respect to elementary polynomials. Matematičeskoe obrazovanie, Tome 91 (2019) no. 3, pp. 18-21. http://geodesic.mathdoc.fr/item/MO_2019_91_3_a2/

[1] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985

[2] Prasolov V.V., Mnogochleny, MTsNMO, M., 2003