Hermite--Hadamard inequalities: educational and historical aspects
Matematičeskoe obrazovanie, Tome 87 (2018) no. 3, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known in the theory of convex functions Hermite–Hadamard inequalities are considered. Hiistorical and educational aspects are discussed.
Keywords: convex function, concave function, Hermite–Hadamard inequalities, Fejer inequalities, definition of Jensen convexity.
@article{MO_2018_87_3_a3,
     author = {S. I. Kalinin and L. V. Pankratova},
     title = {Hermite--Hadamard inequalities:  educational and historical aspects},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2018_87_3_a3/}
}
TY  - JOUR
AU  - S. I. Kalinin
AU  - L. V. Pankratova
TI  - Hermite--Hadamard inequalities:  educational and historical aspects
JO  - Matematičeskoe obrazovanie
PY  - 2018
SP  - 17
EP  - 31
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2018_87_3_a3/
LA  - ru
ID  - MO_2018_87_3_a3
ER  - 
%0 Journal Article
%A S. I. Kalinin
%A L. V. Pankratova
%T Hermite--Hadamard inequalities:  educational and historical aspects
%J Matematičeskoe obrazovanie
%D 2018
%P 17-31
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2018_87_3_a3/
%G ru
%F MO_2018_87_3_a3
S. I. Kalinin; L. V. Pankratova. Hermite--Hadamard inequalities:  educational and historical aspects. Matematičeskoe obrazovanie, Tome 87 (2018) no. 3, pp. 17-31. http://geodesic.mathdoc.fr/item/MO_2018_87_3_a3/

[1] Vinogradov O.L., Matematicheskii analiz, uchebnik, BKhV-Peterburg, SPb., 2017, 752 pp.

[2] Noor M.A., Noor K.I., Awan M.U., “Some characterizations of harmonically log-convex functions”, Proceedings of the Jangjeon Mathematical Society, 17:1 (2014), 51–61 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3184462'>3184462</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1296.26089'>1296.26089</ext-link>

[3] Demidovich B.P., Sbornik zadach i uprazhnenii po matematicheskomu analizu, Ucheb. posobie, OOO «Izdatelstvo AST», M., 200, 558 pp.

[4] Kudryavtsev L.D., Kutasov A.D., Chekhlov V.I., Shabunin M.I., Sbornik zadach po matematicheskomu analizu, Ucheb. posobie, v. 2, Integraly. Ryady, 2, pererab. i dop., ed. L.D. Kudryavtseva, FIZMATLIT, M., 2009, 504 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1617334'>1617334</ext-link>

[5] Vinogradova I.A., Olekhnik S.N., Sadovnichii V.A., Zadachi i uprazhneniya po matematicheskomu analizu, Posobie dlya universitetov, ped. vuzov: V 2 ch., v. 1, Differentsialnoe i integralnoe ischislenie, 3, ispr., ed. V.A. Sadovnichii, Drofa, M., 2001, 725 pp.

[6] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA monographs, Victoria University, 2002, 361 pp.

[7] Jensen J.L.W.V., “Sur les fonctions convexes et les inégalités entre les voleurs mogernmes”, Acta. Math., 30 (1906), 175–193 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02418571'>10.1007/BF02418571</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1555027'>1555027</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:37.0422.02'>37.0422.02</ext-link>

[8] Kalinin S.I., Kanin E.S., Mayanskaya G.M., Onchukova L.V., Podgornaya I.I., Faleleeva S.A., Zadachi i uprazhneniya po nachalam matematicheskogo analiza, Posobie dlya uchaschikhsya shkol i klassov s uglublennym izucheniem matematiki i dlya vneklassnykh zanyatii matematikoi, 2, Moskovskii Litsei, M., 2001, 208 pp.

[9] Mitrinović D.S., Lacković I.B., “Hermite and convexity”, Aequationes Math., 28 (1985), 229–232 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02189414'>10.1007/BF02189414</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=791622'>791622</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0572.26004'>0572.26004</ext-link>

[10] Pečaric J., Proschan F., Tong Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., 1992, 467 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1162312'>1162312</ext-link>

[11] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, 361 pp.

[12] Beckenbach E.F., “Convex functions”, Bull. Amer. Math. Soc., 54 (1948), 439–460 <ext-link ext-link-type='doi' href='https://doi.org/10.1090/S0002-9904-1948-08994-7'>10.1090/S0002-9904-1948-08994-7</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=24479'>24479</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0041.38003'>0041.38003</ext-link>

[13] Féjer L., “Über die Fourierreihen, II”, Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369–390 (In Hungarian)

[14] Niculescu C.P., Persson L.E., Convex Functions and Their Applications: A Contemporary Approach, CMS Books in Mathematics, Springer-Verlag, New York, 2005 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2178902'>2178902</ext-link>

[15] Niculescu C.P, Persson L.E., “Old and new on the Hermite-Hadamard inequality”, Real Analysis Exchange, 29:2 (2004), 663–686 <ext-link ext-link-type='doi' href='https://doi.org/10.14321/realanalexch.29.2.0663'>10.14321/realanalexch.29.2.0663</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2060885'>2060885</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1073.26015'>1073.26015</ext-link>

[16] Allasia G., “Historical and analytic notes on Hermite-Hadamard inequalities”, Memorie Accad. Sci. Torino, 29 (2005), 21–39.

[17] Hadamard J., “Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considerée par Riemann”, J. Math. Pures et Appl., 58 (1893), 171–215.

[18] Khardi G.G., Littlvud D.E., Polia G., Neravenstva, GIIL, M., 1948, 456 pp.

[19] Burk F., “The geometric, logarithmic, and arithmetic mean inequality”, The American Mathematical Monthly, 94:6 (1987), 527–528 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00029890.1987.12000678'>10.1080/00029890.1987.12000678</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1541119'>1541119</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0632.26008'>0632.26008</ext-link>

[20] Berman G.N., Sbornik zadach po kursu matematicheskogo analiza, Uch. posobie, 22, pererab., Professiya, SPb., 2001, 432 pp.

[21] Artin E., Einführung in die theorie der Gammafunktion, B.G. Teubner, Berlin–Leipzig, 1931, 39 pp.

[22] Gardner R.J., “The Brunn-Minkowski inequality”, Bull. Amer. Math. Soc., 39 (2002), 355–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1090/S0273-0979-02-00941-2'>10.1090/S0273-0979-02-00941-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1898210'>1898210</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1019.26008'>1019.26008</ext-link>