A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
Matematičeskoe obrazovanie, Tome 86 (2018) no. 2, pp. 40-43

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple method of decomposition of the hyperbolic tangent function into infinite product by the potential theory approach is suggested. This implies the famous Wallis formula.
Keywords: Hyperbolic tangent
Mots-clés : Wallis formula.
@article{MO_2018_86_2_a3,
     author = {S. N. Sazonov},
     title = {A method of deriving the {Wallis} formula and of decomposition of hyperbolic functions into infinite products},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {40--43},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/}
}
TY  - JOUR
AU  - S. N. Sazonov
TI  - A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
JO  - Matematičeskoe obrazovanie
PY  - 2018
SP  - 40
EP  - 43
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/
LA  - ru
ID  - MO_2018_86_2_a3
ER  - 
%0 Journal Article
%A S. N. Sazonov
%T A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
%J Matematičeskoe obrazovanie
%D 2018
%P 40-43
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/
%G ru
%F MO_2018_86_2_a3
S. N. Sazonov. A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products. Matematičeskoe obrazovanie, Tome 86 (2018) no. 2, pp. 40-43. http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/