A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
Matematičeskoe obrazovanie, Tome 86 (2018) no. 2, pp. 40-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple method of decomposition of the hyperbolic tangent function into infinite product by the potential theory approach is suggested. This implies the famous Wallis formula.
Keywords: Hyperbolic tangent
Mots-clés : Wallis formula.
@article{MO_2018_86_2_a3,
     author = {S. N. Sazonov},
     title = {A method of deriving the {Wallis} formula and of decomposition of hyperbolic functions into infinite products},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {40--43},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/}
}
TY  - JOUR
AU  - S. N. Sazonov
TI  - A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
JO  - Matematičeskoe obrazovanie
PY  - 2018
SP  - 40
EP  - 43
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/
LA  - ru
ID  - MO_2018_86_2_a3
ER  - 
%0 Journal Article
%A S. N. Sazonov
%T A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products
%J Matematičeskoe obrazovanie
%D 2018
%P 40-43
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/
%G ru
%F MO_2018_86_2_a3
S. N. Sazonov. A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products. Matematičeskoe obrazovanie, Tome 86 (2018) no. 2, pp. 40-43. http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/

[1] A.P. Yushkevich (red.), Istoriya matematiki s drevneishikh vremën do nachala XIX stoletiya, v. I–III, Nauka, M., 1970

[2] Whiteside D.T., “Patterns of Matematical Thought in the later Seventeenth Centur”, Arch. Hist. Exact Sci., I:4 (1961), 179–388 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00327940'>10.1007/BF00327940</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=130146'>130146</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0099.24401'>0099.24401</ext-link>

[3] Smirnov V.I., Kurs vysshei matematiki, chast 2, gl. III, v. III, BKhV Peterburg, SPb:, 2010, 816 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=125182'>125182</ext-link>

[4] Friedmann T., Hagen C.R., “Quantum Mechanical Derivation of the Wallis Formula for $\pi $”, J. Math. Phys, 56:11 (2015), 112101 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.4930800'>10.1063/1.4930800</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3421487'>3421487</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1334.11093'>1334.11093</ext-link>

[5] Tamm I.E., Osnovy teorii elektrichestva, glava 1, Nauka, M., 1976

[6] Landau L.D., Lifshits E.M., Elektrodinamika sploshnykh sred, §44, Nauka, M., 1983, 616 pp.