Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2018_86_2_a3, author = {S. N. Sazonov}, title = {A method of deriving the {Wallis} formula and of decomposition of hyperbolic functions into infinite products}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {40--43}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/} }
TY - JOUR AU - S. N. Sazonov TI - A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products JO - Matematičeskoe obrazovanie PY - 2018 SP - 40 EP - 43 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/ LA - ru ID - MO_2018_86_2_a3 ER -
S. N. Sazonov. A method of deriving the Wallis formula and of decomposition of hyperbolic functions into infinite products. Matematičeskoe obrazovanie, Tome 86 (2018) no. 2, pp. 40-43. http://geodesic.mathdoc.fr/item/MO_2018_86_2_a3/
[1] A.P. Yushkevich (red.), Istoriya matematiki s drevneishikh vremën do nachala XIX stoletiya, v. I–III, Nauka, M., 1970
[2] Whiteside D.T., “Patterns of Matematical Thought in the later Seventeenth Centur”, Arch. Hist. Exact Sci., I:4 (1961), 179–388 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00327940'>10.1007/BF00327940</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=130146'>130146</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0099.24401'>0099.24401</ext-link>
[3] Smirnov V.I., Kurs vysshei matematiki, chast 2, gl. III, v. III, BKhV Peterburg, SPb:, 2010, 816 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=125182'>125182</ext-link>
[4] Friedmann T., Hagen C.R., “Quantum Mechanical Derivation of the Wallis Formula for $\pi $”, J. Math. Phys, 56:11 (2015), 112101 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.4930800'>10.1063/1.4930800</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3421487'>3421487</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1334.11093'>1334.11093</ext-link>
[5] Tamm I.E., Osnovy teorii elektrichestva, glava 1, Nauka, M., 1976
[6] Landau L.D., Lifshits E.M., Elektrodinamika sploshnykh sred, §44, Nauka, M., 1983, 616 pp.