Constructing quadrilaterals with prescribed properties
Matematičeskoe obrazovanie, Tome 85 (2018) no. 1, pp. 10-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some types of quadrilaterals which can be constructed on the basis of a given triangle are analyzed.
Keywords: the construction of a quadrilateral by carrying out Chevian from two vertices of a triangle, the circle of Soddy, the point of Mikel.
@article{MO_2018_85_1_a2,
     author = {S. M. Takhayev},
     title = {Constructing quadrilaterals with prescribed properties},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {10--32},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2018_85_1_a2/}
}
TY  - JOUR
AU  - S. M. Takhayev
TI  - Constructing quadrilaterals with prescribed properties
JO  - Matematičeskoe obrazovanie
PY  - 2018
SP  - 10
EP  - 32
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2018_85_1_a2/
LA  - ru
ID  - MO_2018_85_1_a2
ER  - 
%0 Journal Article
%A S. M. Takhayev
%T Constructing quadrilaterals with prescribed properties
%J Matematičeskoe obrazovanie
%D 2018
%P 10-32
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2018_85_1_a2/
%G ru
%F MO_2018_85_1_a2
S. M. Takhayev. Constructing quadrilaterals with prescribed properties. Matematičeskoe obrazovanie, Tome 85 (2018) no. 1, pp. 10-32. http://geodesic.mathdoc.fr/item/MO_2018_85_1_a2/

[1] Yiu P., Euclidean Geometry, 1998

[2] Josefsson M., Forum Geom, 10–14, 2010–2014 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2726487'>2726487</ext-link>

[3] Minculete N., Forum Geom, 9, 2009 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2534383'>2534383</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1168.51004'>1168.51004</ext-link>

[4] Ehrmann J.P., “Some geometric constructions”, Forum Geom, 6, 2006, 327–334 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2282253'>2282253</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1125.51010'>1125.51010</ext-link>

[5] Kimberling C., Encyclopedia of Triangle Centers, <ext-link ext-link-type='uri' href='https://faculty.evansville.edu/ck6/encyclopedia/'>https://faculty.evansville.edu/ck6/encyclopedia/</ext-link>

[6] Kokster G.S.M., Vvedenie v geometriyu, glava 1, M., 1966 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=212646'>212646</ext-link>

[7] Delone B., Zhitomirskii O., Zadachnik po geometrii, zadacha 85, M., 1950

[8] Djukic D., Jankovic V.,, The IMO Compendium, Springer, 2006 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2203417'>2203417</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1104.00004'>1104.00004</ext-link>

[9] Vitas K.,, Art of Problem Solving, , 2006 <ext-link ext-link-type='uri' href='http://www.artofproblemsolving.com/Forum/viewtopic.php?t=110887'>http://www.artofproblemsolving.com/Forum/viewtopic.php?t=110887</ext-link>

[10] Salazar J.C., Bicentric Quadrilateral 3, Art of Problem Solving, , 2005 <ext-link ext-link-type='uri' href='http://www.artofproblemsolving.com/Forum/viewtopic.php?t=38991'>http://www.artofproblemsolving.com/Forum/viewtopic.php?t=38991</ext-link>

[11] Salazar J.C., Bicentric Quadrilateral 3, Art of Problem Solving, 2005 <ext-link ext-link-type='uri' href='http://www.artofproblemsolving.com/Forum/viewtopic.php?t=406453'>http://www.artofproblemsolving.com/Forum/viewtopic.php?t=406453</ext-link>

[12] Barbu C., Patrascu I., Forum Geom, 12, 2012, 149–152 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2955636'>2955636</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1241.51004'>1241.51004</ext-link>