On bounded and unbounded curves in Euclidian space
Matematičeskoe obrazovanie, Tome 84 (2017) no. 4, pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a curve in $\mathbb{R}^3$ and provide sufficient conditions for the curve to be unbounded in terms of its curvature and torsion. We also present sufficient conditions on the curvatures for the curve to be bounded in $\mathbb{R}^4$.
@article{MO_2017_84_4_a3,
     author = {O. \`E. Zubelevich},
     title = {On bounded and unbounded curves in {Euclidian} space},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {20--24},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_84_4_a3/}
}
TY  - JOUR
AU  - O. È. Zubelevich
TI  - On bounded and unbounded curves in Euclidian space
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 20
EP  - 24
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2017_84_4_a3/
LA  - en
ID  - MO_2017_84_4_a3
ER  - 
%0 Journal Article
%A O. È. Zubelevich
%T On bounded and unbounded curves in Euclidian space
%J Matematičeskoe obrazovanie
%D 2017
%P 20-24
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2017_84_4_a3/
%G en
%F MO_2017_84_4_a3
O. È. Zubelevich. On bounded and unbounded curves in Euclidian space. Matematičeskoe obrazovanie, Tome 84 (2017) no. 4, pp. 20-24. http://geodesic.mathdoc.fr/item/MO_2017_84_4_a3/

[1] Alexander S., Bishop R., and Ghrist R., “Total curvature and simple pursuit on domains of curvature bounded above”, Geometriae Dedicata, 2010, no. 147, 275–290 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10711-010-9481-z'>10.1007/s10711-010-9481-z</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2737693'>2737693</ext-link>

[2] Courant R., Differential and Integral Calculus, v. 1, John Wiley and Sons, 1988 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1009558'>1009558</ext-link>

[3] Frenchel W., “On the differential geometry of closed space curves”, Bull. Amer. Math. Soc., 1951, no. 57, 44–54 <ext-link ext-link-type='doi' href='https://doi.org/10.1090/S0002-9904-1951-09440-9'>10.1090/S0002-9904-1951-09440-9</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=40040'>40040</ext-link>

[4] Gifford P.W., “Some refinements in theory of specialized space curves”, Amer. Math. Monthly, 1953, no. 60, 384–393 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00029890.1953.11988310'>10.1080/00029890.1953.11988310</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=54999'>54999</ext-link>

[5] Yung-Chow Wong, Hon-Fei Lai, “A Critical Examination of the Theory of Curves in Three Dimensional Differential Geometry”, Tohoku Math. Journ, 19:1 (1967) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=213973'>213973</ext-link>