An alternative definition of the complex logarithm
Matematičeskoe obrazovanie, Tome 83 (2017) no. 3, pp. 48-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A technically simpler equivalent definition of logarithm of the complex variable is suggested.
Keywords: complex logarithm as the limit of a convergent sequence.
@article{MO_2017_83_3_a5,
     author = {S. V. Shvedenko},
     title = {An alternative definition of the complex logarithm},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {48--50},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_83_3_a5/}
}
TY  - JOUR
AU  - S. V. Shvedenko
TI  - An alternative definition of the complex logarithm
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 48
EP  - 50
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2017_83_3_a5/
LA  - ru
ID  - MO_2017_83_3_a5
ER  - 
%0 Journal Article
%A S. V. Shvedenko
%T An alternative definition of the complex logarithm
%J Matematičeskoe obrazovanie
%D 2017
%P 48-50
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2017_83_3_a5/
%G ru
%F MO_2017_83_3_a5
S. V. Shvedenko. An alternative definition of the complex logarithm. Matematičeskoe obrazovanie, Tome 83 (2017) no. 3, pp. 48-50. http://geodesic.mathdoc.fr/item/MO_2017_83_3_a5/

[1] Cauchy A.L., {ØE}uvres complètes. Sér. I–II, Paris, 1887–1974. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2868471'>2868471</ext-link>

[2] Gardi G., Integrirovanie elementarnykh funktsii, ONTI, M.-L., 1935.

[3] Shvedenko S. V., “Ob alternativnom opredelenii logarifma”, Matematicheskoe obrazovanie, 2017, no. 4(80), 52–53