Klein's Erlangen Program and geometry of a triangle
Matematičeskoe obrazovanie, Tome 83 (2017) no. 3, pp. 28-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article is compared triangle's geometry and Felix Klein's Erlangen Program. As a result it revealed mistake wide-spread interpretation Euclid's planimetry as the doctrine about invariants of group motions of plane. Author considers one of possible ways of removal this mistake with the help
Keywords: the Steiner curve, the group of transformations, the group on the set of triangles, the group of motions, the affine and projective transformations, the group of point transformations, the group of linear fractional transformations, the orthopole points of the tangents to the circumscribed circle form a Steiner curve.
@article{MO_2017_83_3_a3,
     author = {M. E. Stepanov},
     title = {Klein's {Erlangen} {Program} and geometry of a triangle},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {28--42},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_83_3_a3/}
}
TY  - JOUR
AU  - M. E. Stepanov
TI  - Klein's Erlangen Program and geometry of a triangle
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 28
EP  - 42
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2017_83_3_a3/
LA  - ru
ID  - MO_2017_83_3_a3
ER  - 
%0 Journal Article
%A M. E. Stepanov
%T Klein's Erlangen Program and geometry of a triangle
%J Matematičeskoe obrazovanie
%D 2017
%P 28-42
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2017_83_3_a3/
%G ru
%F MO_2017_83_3_a3
M. E. Stepanov. Klein's Erlangen Program and geometry of a triangle. Matematičeskoe obrazovanie, Tome 83 (2017) no. 3, pp. 28-42. http://geodesic.mathdoc.fr/item/MO_2017_83_3_a3/

[1] Stepanov M.E., “Erlangenskaya programma Kleina i geometriya treugolnika (chast pervaya)”, Modelirovanie i analiz dannykh, 2015, no. 1

[2] Stepanov M.E., “Erlangenskaya programma Kleina i geometriya treugolnika (chast vtoraya)”, Modelirovanie i analiz dannykh, 2016, no. 1

[3] Arnold V.I., Astroidalnaya geometriya gipotsikloid i gessianova topologiya giperbolicheskikh mnogochlenov, Izd. MTsNMO, M., 2001

[4] Istoriya otechestvennoi matematiki, v. 3, Naukova dumka, Kiev, 1968. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=237276'>237276</ext-link>

[5] Zetel S.I., Novaya geometriya treugolnika, Uchpedgiz, M., 1962

[6] Kulanin E.D., Fedin S.N., Geometriya treugolnika v zadachakh, Knizhnyi dom «Librokom», M., 2009.

[7] Kulanin E.D., Shikhova N.A., Geometricheskii feierverk: Tvorcheskie zadaniya na urokakh matematiki, Ileksa, M., 2016

[8] Kulanin E.D., “O pryamykh Simsona, krivoi Shteinera i kubike Mak-Keya”, Matematicheskoe prosveschenie. Ser. 3, 2006, no. 10

[9] Kulanin E.D., “Viktor Tebo i ego zadachi”, Matematicheskoe prosveschenie. Ser. 3, 2007, no. 11

[10] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985.