Approximation of Euler equations
Matematičeskoe obrazovanie, Tome 82 (2017) no. 2, pp. 44-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

On approximation of completely integrable Euler differential equations by the least-squares method.
Keywords: the Euler equation, an arbitrary generating function, the method of least squares.
@article{MO_2017_82_2_a3,
     author = {A. N. Bulanova and V. V. Ivlev},
     title = {Approximation of {Euler} equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {44--48},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_82_2_a3/}
}
TY  - JOUR
AU  - A. N. Bulanova
AU  - V. V. Ivlev
TI  - Approximation of Euler equations
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 44
EP  - 48
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2017_82_2_a3/
LA  - ru
ID  - MO_2017_82_2_a3
ER  - 
%0 Journal Article
%A A. N. Bulanova
%A V. V. Ivlev
%T Approximation of Euler equations
%J Matematičeskoe obrazovanie
%D 2017
%P 44-48
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2017_82_2_a3/
%G ru
%F MO_2017_82_2_a3
A. N. Bulanova; V. V. Ivlev. Approximation of Euler equations. Matematičeskoe obrazovanie, Tome 82 (2017) no. 2, pp. 44-48. http://geodesic.mathdoc.fr/item/MO_2017_82_2_a3/

[1] Ivlev V.V., Baranova M.V., “Ob odnom klasse lineinykh differentsialnykh uravnenii”, Matematicheskoe obrazovanie, 2012, no. 4(64)

[2] Ivlev V.V., Arkhipova E.M., “Ob odnom reshenii eilerovykh uravnenii”, Vserossiiskaya konferentsiya MIESEKO, Vestnik MFYuA, no. 1, 2013