Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature
Matematičeskoe obrazovanie, Tome 81 (2017) no. 1, pp. 40-47

Voir la notice de l'article provenant de la source Math-Net.Ru

For three-edge polygons of types eee(I) and eee(III) on hyperbolic plane of positive curvature (Kahly-Klein model), an analogue of Stuart theorem is proven.
@article{MO_2017_81_1_a5,
     author = {L. N. Romakina and I. V. Fedorov},
     title = {Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/}
}
TY  - JOUR
AU  - L. N. Romakina
AU  - I. V. Fedorov
TI  - Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 40
EP  - 47
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/
LA  - ru
ID  - MO_2017_81_1_a5
ER  - 
%0 Journal Article
%A L. N. Romakina
%A I. V. Fedorov
%T Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature
%J Matematičeskoe obrazovanie
%D 2017
%P 40-47
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/
%G ru
%F MO_2017_81_1_a5
L. N. Romakina; I. V. Fedorov. Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature. Matematičeskoe obrazovanie, Tome 81 (2017) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/