Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature
Matematičeskoe obrazovanie, Tome 81 (2017) no. 1, pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

For three-edge polygons of types eee(I) and eee(III) on hyperbolic plane of positive curvature (Kahly-Klein model), an analogue of Stuart theorem is proven.
@article{MO_2017_81_1_a5,
     author = {L. N. Romakina and I. V. Fedorov},
     title = {Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/}
}
TY  - JOUR
AU  - L. N. Romakina
AU  - I. V. Fedorov
TI  - Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature
JO  - Matematičeskoe obrazovanie
PY  - 2017
SP  - 40
EP  - 47
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/
LA  - ru
ID  - MO_2017_81_1_a5
ER  - 
%0 Journal Article
%A L. N. Romakina
%A I. V. Fedorov
%T Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature
%J Matematičeskoe obrazovanie
%D 2017
%P 40-47
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/
%G ru
%F MO_2017_81_1_a5
L. N. Romakina; I. V. Fedorov. Resolving of three-edge polygons of types $eee(i)$ and $eee(iii)$ on hyperbolic plane of positive curvature. Matematičeskoe obrazovanie, Tome 81 (2017) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/MO_2017_81_1_a5/

[1] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[2] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M., 1955.

[3] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny, v 4 ch., v. 1, Trigonometriya, Izd-vo Sarat. un-ta, Saratov, 2013

[4] Romakina L. N., “Analogi formuly Lobachevskogo dlya ugla parallelnosti na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Sib. elektron. matem. izv., 2013, no. 10, 393–407

[5] Romakina L. N., “Konechnye zamknutye 3(4)-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26

[6] Romakina L. N., “Teorema o ploschadi pryamougolnogo trekhrebernika giperbolicheskoi ploskosti polozhitelnoi krivizny”, Dalnevost. matem. zhurn., 13:1 (2013), 127–147

[7] Romakina L. N., “O ploschadi trekhrebernika na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matem. tr., 17:2 (2014), 184–206

[8] Romakina L. N., “Razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny pravilnymi oritsiklicheskimi $n$-trapetsiyami”, Chebyshevskii sb., 16:3 (2015), 376–416

[9] Romakina L. N., “Analogi formuly Gerona dlya trekhrebernikov tipov $eee(I)$, $eee(III)$ giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matematika. Mekhanika, 17 (2015), 52–55

[10] Romakina L. N., Churilova V. O., “Ellipticheskie oritsiklicheskie $n$-reberniki ploskosti $\widehat{H}$”, Matematika. Mekhanika, 17 (2015), 56–59

[11] Romakina L. N., “Ploschadi vpisannykh v gipertsikl pravilnykh mnogougolnikov giperbolicheskoi ploskosti polozhitelnoi krivizny”, Innovatsionnaya nauka, 6:3 (2016), 20–23

[12] Romakina L. N., “The Area of a Generalized Polygon without Parabolic Edges of a Hyperbolic Plane of Positive Curvature”, Asian Journal of Mathematics and Computer Research, 10:4 (2016), 293–310