Euler Circles of Intriangles and
Matematičeskoe obrazovanie, Tome 79 (2016) no. 3, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a triangle, let us define the "intriangle" with the vertices at the tangent points of the incircle of the given triangle, and "extriangles" with the vertices at tangent points of the excircles of the given triangle. Euler circles of intriangles and extriangles are studied.
Keywords: inscribed circle excircle, Euler circle.
@article{MO_2016_79_3_a4,
     author = {E. D. Kulanin and N. Shihova},
     title = {Euler {Circles} of {Intriangles} and},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2016_79_3_a4/}
}
TY  - JOUR
AU  - E. D. Kulanin
AU  - N. Shihova
TI  - Euler Circles of Intriangles and
JO  - Matematičeskoe obrazovanie
PY  - 2016
SP  - 38
EP  - 48
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2016_79_3_a4/
LA  - ru
ID  - MO_2016_79_3_a4
ER  - 
%0 Journal Article
%A E. D. Kulanin
%A N. Shihova
%T Euler Circles of Intriangles and
%J Matematičeskoe obrazovanie
%D 2016
%P 38-48
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2016_79_3_a4/
%G ru
%F MO_2016_79_3_a4
E. D. Kulanin; N. Shihova. Euler Circles of Intriangles and. Matematičeskoe obrazovanie, Tome 79 (2016) no. 3, pp. 38-48. http://geodesic.mathdoc.fr/item/MO_2016_79_3_a4/

[1] Kulanin E.D., Shikhova N.A., “Pryamye Eilera i tochki Feierbakha”, Matematicheskoe obrazovanie, 2012., no. 2(62)

[2] Kulanin E.D., Shikhova N.A., Geometricheskii feierverk. Tvorcheskie zadaniya na urokakh matematiki, Ileksa, M., 2016