To Definition of the System of Complex Numbers
Matematičeskoe obrazovanie, Tome 78 (2016) no. 2, pp. 33-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some logical questions of definition of the system of complex numbers are discussed.
Keywords: Complex numbers, Gauss approach, Hamilton approach.
@article{MO_2016_78_2_a5,
     author = {S. V. Shvedenko},
     title = {To {Definition} of the {System} of {Complex} {Numbers}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {33--34},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2016_78_2_a5/}
}
TY  - JOUR
AU  - S. V. Shvedenko
TI  - To Definition of the System of Complex Numbers
JO  - Matematičeskoe obrazovanie
PY  - 2016
SP  - 33
EP  - 34
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2016_78_2_a5/
LA  - ru
ID  - MO_2016_78_2_a5
ER  - 
%0 Journal Article
%A S. V. Shvedenko
%T To Definition of the System of Complex Numbers
%J Matematičeskoe obrazovanie
%D 2016
%P 33-34
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2016_78_2_a5/
%G ru
%F MO_2016_78_2_a5
S. V. Shvedenko. To Definition of the System of Complex Numbers. Matematičeskoe obrazovanie, Tome 78 (2016) no. 2, pp. 33-34. http://geodesic.mathdoc.fr/item/MO_2016_78_2_a5/

[1] Gauss C. F., Werke, Göttingen, 1863–1933

[2] Hamilton W. R., Lectures on quaternions, London–Cambridge, 1853