Constructing Fold Line in Origami
Matematičeskoe obrazovanie, Tome 77 (2016) no. 1, pp. 10-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fold line of Origami geometry is constructed for the case, when a vertex of a square maps to an arbitrary point inside the square.
Keywords: Origami, the inflection line, the point of moving a square angle.
@article{MO_2016_77_1_a2,
     author = {A. F. Lyakhov},
     title = {Constructing {Fold} {Line} in {Origami}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {10--18},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2016_77_1_a2/}
}
TY  - JOUR
AU  - A. F. Lyakhov
TI  - Constructing Fold Line in Origami
JO  - Matematičeskoe obrazovanie
PY  - 2016
SP  - 10
EP  - 18
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2016_77_1_a2/
LA  - ru
ID  - MO_2016_77_1_a2
ER  - 
%0 Journal Article
%A A. F. Lyakhov
%T Constructing Fold Line in Origami
%J Matematičeskoe obrazovanie
%D 2016
%P 10-18
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2016_77_1_a2/
%G ru
%F MO_2016_77_1_a2
A. F. Lyakhov. Constructing Fold Line in Origami. Matematičeskoe obrazovanie, Tome 77 (2016) no. 1, pp. 10-18. http://geodesic.mathdoc.fr/item/MO_2016_77_1_a2/

[1] Kolmogorov A.N., Matematika v eë istoricheskom razvitii, Nauka, M., 1991, 224 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1157155'>1157155</ext-link>

[2] Klain M., Matematika. Utrata opredelënnosti, Mir, M., 1984, 434 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=786660'>786660</ext-link>

[3] Panov V.F., Matematika drevnyaya i yunaya, Izd-vo MGTU im. N. E. Baumana, M., 2006, 648 pp.

[4] Schetnikov A.I., “Vozniknovenie teoreticheskoi matematiki i pifogoreiskaya soteriologiya vospominaniya”, Matematicheskoe obrazovanie, 2005, no. 4(35), 17

[5] Schetnikov A.I., “Geometriya kak forma svobodnogo obrazovaniya: istoki antichnoi traditsii.”, Aktualnye problemy podgotovki buduschego uchitelya matematiki. Istoriko-matematicheskii i istoriko-metodicheskie aspekty, 4, Izd-vo Kaluzhskogo ped. un-ta, 2002, 75–78

[6] Origami <ext-link ext-link-type='uri' href='https://ru.wikipedia.org/wiki/ %D0%9E%D1%80%D0%B8%D0%B3%D0%B0%D0%BC%D0%B8'>http//ru.wikipedia/wiki/Origami</ext-link>

[7] Khaga Kaduzuo., Origamika. Matematicheskie opyty so skladyvaniem bumagi, MTsNMO, M., 2002, 160 pp.

[8] Kasakhara K., Tasakhama T., Origami dlya znatokov, Izd. Alsio, 1987, 168 pp.

[9] Belim S.N., Zadachi po geometrii, reshaemye metodami origami, izd. «Akim», M., 1998, 66 pp.

[10] Afonkin S.Yu., Kapitonova I.V., Origami i geometriya, ChGU, Cheboksary, 1993, 28 pp.

[11] Prasolov V.V., Tri klassicheskie zadachi na postroenie. Udvoenie kuba, trisektsiya ugla, kvadratura kruga, Nauka, M., 1992, 80 pp.

[12] Grischenko D.I., “Origami, ili chto mozhno poluchit s pomoschyu skladyvaniya lista bumagi”, Matematicheskoe prosveschenie, 2013, no. 17, 68–87