Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2015_76_4_a3, author = {T. V. Dudnikova}, title = {On the limit amplitude principle for the 1d}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {53--58}, publisher = {mathdoc}, volume = {76}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2015_76_4_a3/} }
T. V. Dudnikova. On the limit amplitude principle for the 1d. Matematičeskoe obrazovanie, Tome 76 (2015) no. 4, pp. 53-58. http://geodesic.mathdoc.fr/item/MO_2015_76_4_a3/
[1] H. Lamb, “On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium”, Proc. London Math. Soc., 32 (1900), 208–211 <ext-link ext-link-type='doi' href='https://doi.org/10.1112/plms/s1-32.1.208'>10.1112/plms/s1-32.1.208</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1576221'>1576221</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:31.0785.01'>31.0785.01</ext-link>
[2] A.I. Komech, “On stabilization of string–nonlinear oscillator interaction”, J. Math. Anal. Appl., 196 (1995), 384–409 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmaa.1995.1415'>10.1006/jmaa.1995.1415</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1359949'>1359949</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0859.35076'>0859.35076</ext-link>
[3] V.A. Pliss, Nelokalnye problemy teorii kolebanii, Nauka, M., 1964, 368 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=171962'>171962</ext-link>
[4] V.A. Pliss, Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977, 304 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=477330'>477330</ext-link>