On the limit amplitude principle for the 1d
Matematičeskoe obrazovanie, Tome 76 (2015) no. 4, pp. 53-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The limit amplitude principle for the 1D non-linear wave equation is proven.
Keywords: The one-dimensional nonlinear wave equation, periodic initial data, the principle of limiting amplitude.
@article{MO_2015_76_4_a3,
     author = {T. V. Dudnikova},
     title = {On the limit amplitude principle for the 1d},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {53--58},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2015_76_4_a3/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - On the limit amplitude principle for the 1d
JO  - Matematičeskoe obrazovanie
PY  - 2015
SP  - 53
EP  - 58
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2015_76_4_a3/
LA  - ru
ID  - MO_2015_76_4_a3
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T On the limit amplitude principle for the 1d
%J Matematičeskoe obrazovanie
%D 2015
%P 53-58
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2015_76_4_a3/
%G ru
%F MO_2015_76_4_a3
T. V. Dudnikova. On the limit amplitude principle for the 1d. Matematičeskoe obrazovanie, Tome 76 (2015) no. 4, pp. 53-58. http://geodesic.mathdoc.fr/item/MO_2015_76_4_a3/

[1] H. Lamb, “On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium”, Proc. London Math. Soc., 32 (1900), 208–211 <ext-link ext-link-type='doi' href='https://doi.org/10.1112/plms/s1-32.1.208'>10.1112/plms/s1-32.1.208</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1576221'>1576221</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:31.0785.01'>31.0785.01</ext-link>

[2] A.I. Komech, “On stabilization of string–nonlinear oscillator interaction”, J. Math. Anal. Appl., 196 (1995), 384–409 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jmaa.1995.1415'>10.1006/jmaa.1995.1415</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1359949'>1359949</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0859.35076'>0859.35076</ext-link>

[3] V.A. Pliss, Nelokalnye problemy teorii kolebanii, Nauka, M., 1964, 368 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=171962'>171962</ext-link>

[4] V.A. Pliss, Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977, 304 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=477330'>477330</ext-link>