Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2014_69_1_a3, author = {M. S. Nikol'skii and M. Aboubacar}, title = {On computing {Nash} equilibtium points for a game on a square of two players with quadratic payo function}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {36--41}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/} }
TY - JOUR AU - M. S. Nikol'skii AU - M. Aboubacar TI - On computing Nash equilibtium points for a game on a square of two players with quadratic payo function JO - Matematičeskoe obrazovanie PY - 2014 SP - 36 EP - 41 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/ LA - ru ID - MO_2014_69_1_a3 ER -
%0 Journal Article %A M. S. Nikol'skii %A M. Aboubacar %T On computing Nash equilibtium points for a game on a square of two players with quadratic payo function %J Matematičeskoe obrazovanie %D 2014 %P 36-41 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/ %G ru %F MO_2014_69_1_a3
M. S. Nikol'skii; M. Aboubacar. On computing Nash equilibtium points for a game on a square of two players with quadratic payo function. Matematičeskoe obrazovanie, Tome 69 (2014) no. 1, pp. 36-41. http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/
[1] T. Parkhasaratkhi, T. Ragkhavan, Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974
[2] L. A. Petrosyan, N. A. Zenkevich, E. A. Semina, Teoriya igr, Vysshaya shkola, M., 1998 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1637128'>1637128</ext-link>
[3] Vasin A.A., Morozov V.V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003
[4] S. O. Maschenko, “Kontseptsiya ravnovesiya po Neshu i ee razvitiya (obzor)”, Journal of Comput. and Appl. Mathematics, 2012, no. 1(107), 40–65
[5] V. I. Zhukovskii, Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesiya po Neshu, KRASAND, M., 2010
[6] Zh. P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=978635'>978635</ext-link>
[7] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave N-person games”, Econometrica, 33:3 (1965), 520–534 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/1911749'>10.2307/1911749</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=194210'>194210</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0142.17603'>0142.17603</ext-link>