On computing Nash equilibtium points for a game on a square of two players with quadratic payo function
Matematičeskoe obrazovanie, Tome 69 (2014) no. 1, pp. 36-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive graphic method of finding the set of Nash equilibrium points is suggested. An example of the game is constructed, where this set contains a non-zero straight line segment.
Keywords: game two persons, a quadratic function of winning, the nash equilibrium point.
@article{MO_2014_69_1_a3,
     author = {M. S. Nikol'skii and M. Aboubacar},
     title = {On computing {Nash} equilibtium points for a game on a square of two players with quadratic payo function},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {36--41},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
AU  - M. Aboubacar
TI  - On computing Nash equilibtium points for a game on a square of two players with quadratic payo function
JO  - Matematičeskoe obrazovanie
PY  - 2014
SP  - 36
EP  - 41
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/
LA  - ru
ID  - MO_2014_69_1_a3
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%A M. Aboubacar
%T On computing Nash equilibtium points for a game on a square of two players with quadratic payo function
%J Matematičeskoe obrazovanie
%D 2014
%P 36-41
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/
%G ru
%F MO_2014_69_1_a3
M. S. Nikol'skii; M. Aboubacar. On computing Nash equilibtium points for a game on a square of two players with quadratic payo function. Matematičeskoe obrazovanie, Tome 69 (2014) no. 1, pp. 36-41. http://geodesic.mathdoc.fr/item/MO_2014_69_1_a3/

[1] T. Parkhasaratkhi, T. Ragkhavan, Nekotorye voprosy teorii igr dvukh lits, Mir, M., 1974

[2] L. A. Petrosyan, N. A. Zenkevich, E. A. Semina, Teoriya igr, Vysshaya shkola, M., 1998 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1637128'>1637128</ext-link>

[3] Vasin A.A., Morozov V.V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, M., 2003

[4] S. O. Maschenko, “Kontseptsiya ravnovesiya po Neshu i ee razvitiya (obzor)”, Journal of Comput. and Appl. Mathematics, 2012, no. 1(107), 40–65

[5] V. I. Zhukovskii, Vvedenie v differentsialnye igry pri neopredelennosti. Ravnovesiya po Neshu, KRASAND, M., 2010

[6] Zh. P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=978635'>978635</ext-link>

[7] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave N-person games”, Econometrica, 33:3 (1965), 520–534 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/1911749'>10.2307/1911749</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=194210'>194210</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0142.17603'>0142.17603</ext-link>