Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2014_69_1_a2, author = {A. G. Myakishev}, title = {On some ''triangular'' conics, finished}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {12--35}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2014_69_1_a2/} }
A. G. Myakishev. On some ''triangular'' conics, finished. Matematičeskoe obrazovanie, Tome 69 (2014) no. 1, pp. 12-35. http://geodesic.mathdoc.fr/item/MO_2014_69_1_a2/
[1] A. Akopyan, A. Zaslavskii, Geometricheskie svoistva krivykh vtorogo poryadka, MTsNMO, M., 2011
[2] A. Myakishev, Elementy geometrii treugolnika, MTsNMO, M., 2009
[3] V. Prasolov, Zadachi po planimetrii, MTsNMO, M., 2007
[4] I. Sharygin, Geometriya. Planimetriya, Zadachnik 9–11, Drofa, M., 2001
[5] C. Kimberling, Introduction to the Geometry of the Triangle, Encyclopedia of Triangle Centers, <ext-link ext-link-type='uri' href='http://faculty.evansville.edu/ck6/encyclopedia/'>http://faculty.evansville.edu/ck6/encyclopedia/</ext-link>
[6] E. Kulanin, A. Myakishev, O nekotorykh konikakh, svyazannykh s treugolnikom, Institut logiki, M., 2008
[7] A. Zaslavsky, Geometry of Kiepert and Grinberg–Myakishev hyperbolas, <ext-link ext-link-type='uri' href='http://jcgeometry.org/Articles/Volume1/JCG2012V1pp65-71.pdf'>http://jcgeometry.org/Articles/Volume1/JCG2012V1pp65-71.pdf</ext-link>
[8] D. Grinberg, A. Myakishev, A Generalization of the Kiepert Hyperbola, <ext-link ext-link-type='uri' href='http://forumgeom.fau.edu/FG2004volume4/FG200429index.html'>http://forumgeom.fau.edu/FG2004volume4/FG200429index.html</ext-link>
[9] M. Balk, I. Boltyanskii, Geometriya mass, Bibliotechka «Kvant», 61, Nauka, M., 1987 <ext-link ext-link-type='uri' href='http://www.math.ru/lib/book/djvu/bib-kvant/kvant61.djvu'>http://www.math.ru/lib/book/djvu/bib-kvant/kvant61.djvu</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=931290'>931290</ext-link>
[10] P. Kozhevnikov, «Poluvpisannaya» okruzhnost, Sbornik ‘‘Matematika v zadachakh’’, eds. A. Zaslavskii i dr., MTsNMO, M., 2009
[11] I. Kushnir, “Etyud o poluvpisannoi okruzhnosti”, Geometriya na barrikadakh, glava 17.6, Znaniya na Ukraine, Kiev, 2011
[12] V. Tikhomirov, “O matematikakh — s ulybkoi”, Kvant, 1996, no. 4
[13] C. Kimberling, “Triangle Centers and Central Triangles” (Winnipeg, Canada), Congress Numerantion, 129, 1998 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1636705'>1636705</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0912.51009'>0912.51009</ext-link>
[14] A. Myakishev, Some Properties of the Lemoine Point, <ext-link ext-link-type='uri' href='http://forumgeom.fau.edu/FG2001volume1/FG200113index.html'>http://forumgeom.fau.edu/FG2001volume1/FG200113index.html</ext-link>