Paradoxes of the ``First Remarkable Limit"
Matematičeskoe obrazovanie, Tome 63 (2012) no. 3, pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors show that traditional derivations of the limit sin x/x $\to$ 1 as x $\to$ 0 based on school notions of angle measure and the function sin x contain vicious circle and analyze some alternative approaches.
@article{MO_2012_63_3_a1,
     author = {I. Astakhova and V. Ivanof},
     title = {Paradoxes of the {``First} {Remarkable} {Limit"}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2012_63_3_a1/}
}
TY  - JOUR
AU  - I. Astakhova
AU  - V. Ivanof
TI  - Paradoxes of the ``First Remarkable Limit"
JO  - Matematičeskoe obrazovanie
PY  - 2012
SP  - 5
EP  - 9
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2012_63_3_a1/
LA  - ru
ID  - MO_2012_63_3_a1
ER  - 
%0 Journal Article
%A I. Astakhova
%A V. Ivanof
%T Paradoxes of the ``First Remarkable Limit"
%J Matematičeskoe obrazovanie
%D 2012
%P 5-9
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2012_63_3_a1/
%G ru
%F MO_2012_63_3_a1
I. Astakhova; V. Ivanof. Paradoxes of the ``First Remarkable Limit". Matematičeskoe obrazovanie, Tome 63 (2012) no. 3, pp. 5-9. http://geodesic.mathdoc.fr/item/MO_2012_63_3_a1/