Hypotheses on Medians, Heights, Bisectors and ... Ellipses
Matematičeskoe obrazovanie, Tome 62 (2012) no. 2, pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Six points connected in a special way to a triangle happen in some special cases to belong to one ellipse. The hypotheses are found by computer modelling.
@article{MO_2012_62_2_a3,
     author = {L. Steyngarts},
     title = {Hypotheses on {Medians,} {Heights,} {Bisectors} and ... {Ellipses}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2012_62_2_a3/}
}
TY  - JOUR
AU  - L. Steyngarts
TI  - Hypotheses on Medians, Heights, Bisectors and ... Ellipses
JO  - Matematičeskoe obrazovanie
PY  - 2012
SP  - 41
EP  - 48
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2012_62_2_a3/
LA  - ru
ID  - MO_2012_62_2_a3
ER  - 
%0 Journal Article
%A L. Steyngarts
%T Hypotheses on Medians, Heights, Bisectors and ... Ellipses
%J Matematičeskoe obrazovanie
%D 2012
%P 41-48
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2012_62_2_a3/
%G ru
%F MO_2012_62_2_a3
L. Steyngarts. Hypotheses on Medians, Heights, Bisectors and ... Ellipses. Matematičeskoe obrazovanie, Tome 62 (2012) no. 2, pp. 41-48. http://geodesic.mathdoc.fr/item/MO_2012_62_2_a3/