6 Ways to Derive a Formula of Complex Radical
Matematičeskoe obrazovanie, Tome 37 (2006) no. 2, pp. 2-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical formula of complex radical introduced by Newton is derived in different ways, algebraic, geometric, trigonometric.
@article{MO_2006_37_2_a0,
     author = {V. B. Drozdov},
     title = {6 {Ways} to {Derive} a {Formula} of {Complex} {Radical}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--6},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2006_37_2_a0/}
}
TY  - JOUR
AU  - V. B. Drozdov
TI  - 6 Ways to Derive a Formula of Complex Radical
JO  - Matematičeskoe obrazovanie
PY  - 2006
SP  - 2
EP  - 6
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2006_37_2_a0/
LA  - ru
ID  - MO_2006_37_2_a0
ER  - 
%0 Journal Article
%A V. B. Drozdov
%T 6 Ways to Derive a Formula of Complex Radical
%J Matematičeskoe obrazovanie
%D 2006
%P 2-6
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2006_37_2_a0/
%G ru
%F MO_2006_37_2_a0
V. B. Drozdov. 6 Ways to Derive a Formula of Complex Radical. Matematičeskoe obrazovanie, Tome 37 (2006) no. 2, pp. 2-6. http://geodesic.mathdoc.fr/item/MO_2006_37_2_a0/