Systems of Linear Differential Equations. Integrable Combinations. Part I
Matematičeskoe obrazovanie, Tome 36 (2006) no. 1, pp. 2-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear system dy/dx = Ay the scalar product (a, y ) , where $\alpha$ is an eigenvector or a root vector of the conjugate operator $A^T$, satisfies a linear equation of the first order. This observation provides a method of integrating the original system.
@article{MO_2006_36_1_a0,
     author = {V. V. Ivlev and E. Grjibovskaya},
     title = {Systems of {Linear} {Differential} {Equations.} {Integrable} {Combinations.} {Part} {I}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--9},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2006_36_1_a0/}
}
TY  - JOUR
AU  - V. V. Ivlev
AU  - E. Grjibovskaya
TI  - Systems of Linear Differential Equations. Integrable Combinations. Part I
JO  - Matematičeskoe obrazovanie
PY  - 2006
SP  - 2
EP  - 9
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2006_36_1_a0/
LA  - ru
ID  - MO_2006_36_1_a0
ER  - 
%0 Journal Article
%A V. V. Ivlev
%A E. Grjibovskaya
%T Systems of Linear Differential Equations. Integrable Combinations. Part I
%J Matematičeskoe obrazovanie
%D 2006
%P 2-9
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2006_36_1_a0/
%G ru
%F MO_2006_36_1_a0
V. V. Ivlev; E. Grjibovskaya. Systems of Linear Differential Equations. Integrable Combinations. Part I. Matematičeskoe obrazovanie, Tome 36 (2006) no. 1, pp. 2-9. http://geodesic.mathdoc.fr/item/MO_2006_36_1_a0/