Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_4_a9, author = {M. I. Fokin and S. I. Markov and E. I. Shtanko}, title = {A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {151--165}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/} }
TY - JOUR AU - M. I. Fokin AU - S. I. Markov AU - E. I. Shtanko TI - A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data JO - Matematičeskoe modelirovanie PY - 2024 SP - 151 EP - 165 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/ LA - ru ID - MM_2024_36_4_a9 ER -
%0 Journal Article %A M. I. Fokin %A S. I. Markov %A E. I. Shtanko %T A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data %J Matematičeskoe modelirovanie %D 2024 %P 151-165 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/ %G ru %F MM_2024_36_4_a9
M. I. Fokin; S. I. Markov; E. I. Shtanko. A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 151-165. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/
[1] J. Carroll, Natural Gas Hydrates: A Guide for Engineers, 4th ed., Gulf Professional Publishing, Houston, 2009, 288 pp.
[2] E. Chuvilin, B. Bukhanov, V. Cheverev, R. Motenko, E. Grechishcheva, “Effect of Ice and Hydrate Formation on Thermal Conductivity of Sediments”, Impact of Thermal Conductivity on Energy Technologies, Intech, London, 2018, 19 pp.
[3] D. Huang, S. Fan, “Measuring and modeling thermal conductivity of gas hydrate-bearing sand”, J. of Geophysical Research: Solid Earth, 110:B1 (2005), B01311
[4] D. Li, D. Liang, “Experimental study on the effective thermal conductivity of methane hydrate-bearing sand”, International J. of Heat and Mass Transfer, 92 (2016), 8–14 | DOI
[5] W. F. Waite, B. J. deMartin, S. H. Kirby, J. Pinkston, C. D. Ruppel, “Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand”, Geophysical Research Letters, 29:24 (2002), 82-1–82-4 | DOI
[6] M. Chaouachi, A. Falenty, K. Sell, F. Enzmann, M. Kersten, D. Haberthür, W.F. Kuhs, “Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy”, G-cubed, 16 (2015), 1711–1722
[7] M. I. Fokin, V. V. Nikitin, A. A. Duchkov, “Quantitative analysis of dynamic CT imaging of methanehydrate formation with a hybrid machine learning approach”, J. of Synchrotron Radiation, 30 (2023), 978–988 | DOI
[8] A. Gupta, T. J. Kneafsey, G. J. Moridis, Y. Seol, M. B. Kowalsky, J. Sloan, “Composite thermal conductivity in a large heterogeneous porous methane hydrate sample”, J. of Physical Chemistry B, 110:33 (2006), 16384–16392 | DOI
[9] D. Crandall, G. Bromhal, D. H. Smith, “Conversion of a micro-CT scanned rock fracture into a useful model”, Fluids Eng. Division Summer Meeting, 43727 (2009), 2101–2108
[10] Q. Liu, M. Sun, X. Sun, B. Liu, M. Ostadhassan, W. Huang, Z. Pan, “Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review”, Gas Science and Engineering, 113 (2023), 204967 | DOI
[11] S. Ishutov, F. J. Hasiuk, C. Harding, J. N. Gray, “3D printing sandstone porosity models”, Interpretation, 3:3 (2015), SX49–SX61 | DOI
[12] Y. Zhang, J. Qian, “Dual contouring for domains with topology ambiguity”, Computer Methods in Applied Mechanics and Engineering, 217 (2012), 34–45 | DOI
[13] Z. Chen, A. Tagliasacchi, T. Funkhouser, H. Zhang, “Neural dual contouring”, ACM Transactions on Graphics (TOG), 41:4 (2022), 1–13
[14] A. Cong, Y. Liu, D. Kumar, W. Cong, G. Wang, “Geometrical modeling using multiregional marching tetrahedra for bioluminescence tomography”, Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display, Proc. SPIE, 5744, 2005, 756–763 | DOI
[15] J. Congote, A. Moreno, I. Barandiaran, J. Barandiaran, O. Ruiz, “Extending marching cubes with adaptative methods to obtain more accurate isosurfaces”, Intern. Conf. on Comp. Vision, Imaging Comp. Graphics, Springer, Berlin–Heidelberg, 2009, 35–44
[16] A. B. Andhumoudine, X. Nie, Q. Zhou, J. Yu, O. I. Kane, L. Jin, R. R. Djaroun, “Investigation of coal elastic properties based on digital core technology and finite element method”, Advances in Geo-Energy Research, 5:1 (2021), 53–63 | DOI
[17] D. Wu, S. Li, Y. Guo, L. Liu, Z. Wang, “A novel model of effective thermal conductivity for gas hydrate bearing sediments integrating the hydrate saturation and pore morphology evolution”, Fuel, 324 (2022), 124825 | DOI
[18] L. Yang, J. Zhao, W. Liu, M. Yang, Y. Song, “Experimental study on the effective thermal conductivity of hydrate-bearing sediments”, Energy, 79 (2015), 203–211 | DOI
[19] M. Sanchez, C. Santamarina, M. Teymouri, X. Gai, “Coupled Numerical Modeling of Gas Hydrate-Bearing Sediments: From Laboratory to Field-Scale Analyses”, JGR Solid Earth, 123:12 (2018), 10326–10348 | DOI
[20] V. Alexiades, “Methane hydrate formation and decomposition”, Conference 17, Electronic J. of Differential Equations, 2009, 1–11 | Zbl
[21] N. J. English, “Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate”, Molecular Physics, 106:15 (2008), 1887–1898 | DOI
[22] S. Sun, L. Gu, Z. Yang, Y. Li, C. Zhang, “A new effective thermal conductivity model of methane hydratebearing sediments considering hydrate distribution patterns”, International Journal of Heat and Mass Transfer, 183:26 (2022), 122071 | DOI
[23] D. Wu, S. Li, Y. Guo, L. Liu, Z. Wang, “A novel model of effective thermal conductivity for gas hydratebearing sediments integrating the hydrate saturation and pore morphology evolution”, Fuel, 324 (2022), 124825 | DOI
[24] G. Lei, J. Tang, L. Zhang, Q. Wu, L. Jun, Effective Thermal Conductivity for Hydrate-Bearing Sediments Under Stress and Local Thermal Stimulation Conditions: A Novel Analytical Model https://ssrn.com/abstract=4547757 | DOI
[25] Y. R. Efendiev, T. Y. Hou, X. H. Wu., “Convergence of a nonconforming multiscale finite element method”, SIAM J. Numer. Anal., 37 (2000), 888–910 | DOI | MR | Zbl
[26] A. Abdulle, “Multiscale method based on discontinuous Galerkin methods for homogenization problems”, C. R. Math. Acad. Sci. Paris, 346 (2008), 97–102 | DOI | MR | Zbl
[27] J. Droniou, R. Eymard, T. Gallouet, R. Herbin, “Non-conforming Finite Elements on Polytopal Meshes”, Polyhedral Methods in Geosciences, 27 (2021), 1–35 | DOI | MR | Zbl
[28] M. I. Epov, E. P. Shurina, D. V. Dobrolyubova, A. Yu. Kutishcheva, S. I. Markov, N. V. Shtabel, E. I. Shtanko, “Determination of the Effective Electrical Conductivity of a Fluid-Saturated Core from Computed Tomography Data”, Izvestiya, Physics of the Solid Earth, 59:5 (2023), 672–681 | DOI | MR
[29] E. P. Shurina, A. Yu. Kutishcheva, “Parallel heterogeneous multiscale finite element method”, Highperfomance computing systems and technologies, 1:8 (2018), 118–122
[30] Y. R. Efendiev, The multiscale finite element method (MsFEM) and its applications, Springer, California Institute of Technology, New York, 1999, 234 pp. | MR
[31] D. V. Dobrolubova, E. I. Shtanko, “Hierarchical Volume Mesh Model of Heterogeneous Media Based on Non-Destructive Imaging Data”, Communications in Computer and Information Science, 1733 (2022), 196–205 | DOI