A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data
Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 151-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron-based microtomography data. The construction of a three-phase digital three-dimensional model of samples using machine learning methods with subsequent averaging of mixed-phase thermal conductivity, and application of numerical simulation of the heat transfer process is performed. Unlike the existing analogs, the proposed approach is not based on phenomenological models, but it realizes continuum models, which allow to achieve more physically correct results. Mapping the micro-CT data to a digital model is performed by an algorithm that takes a stack of segmented images as input and generates a discrete grid model with separation into the phases present in the samples. To discretize the mathematical model of the heat transfer process, a multiscale discontinuous Galerkin method is proposed. To calculate the effective thermal conductivity coefficient, a numerical homogenization algorithm based on Fourier's law is implemented. The dependence of the effective thermal conductivity coefficient on the volume fraction of components in the hydrate-bearing samples is shown. We compared the computational results with published experimental, theoretical, and numerical data. A good agreement of the numerical simulation results and published estimates was found at the hydrate saturation more than 15%, and divergence at the hydrate saturation less than 15% for some estimates.
Keywords: gas hydrates, numerical models, numerical simulation, effective thermal conductivity coefficient.
@article{MM_2024_36_4_a9,
     author = {M. I. Fokin and S. I. Markov and E. I. Shtanko},
     title = {A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {151--165},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/}
}
TY  - JOUR
AU  - M. I. Fokin
AU  - S. I. Markov
AU  - E. I. Shtanko
TI  - A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 151
EP  - 165
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/
LA  - ru
ID  - MM_2024_36_4_a9
ER  - 
%0 Journal Article
%A M. I. Fokin
%A S. I. Markov
%A E. I. Shtanko
%T A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data
%J Matematičeskoe modelirovanie
%D 2024
%P 151-165
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/
%G ru
%F MM_2024_36_4_a9
M. I. Fokin; S. I. Markov; E. I. Shtanko. A numerical method for estimating the effective thermal conductivity coefficient of hydrate-bearing rock samples using synchrotron microtomography data. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 151-165. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a9/

[1] J. Carroll, Natural Gas Hydrates: A Guide for Engineers, 4th ed., Gulf Professional Publishing, Houston, 2009, 288 pp.

[2] E. Chuvilin, B. Bukhanov, V. Cheverev, R. Motenko, E. Grechishcheva, “Effect of Ice and Hydrate Formation on Thermal Conductivity of Sediments”, Impact of Thermal Conductivity on Energy Technologies, Intech, London, 2018, 19 pp.

[3] D. Huang, S. Fan, “Measuring and modeling thermal conductivity of gas hydrate-bearing sand”, J. of Geophysical Research: Solid Earth, 110:B1 (2005), B01311

[4] D. Li, D. Liang, “Experimental study on the effective thermal conductivity of methane hydrate-bearing sand”, International J. of Heat and Mass Transfer, 92 (2016), 8–14 | DOI

[5] W. F. Waite, B. J. deMartin, S. H. Kirby, J. Pinkston, C. D. Ruppel, “Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand”, Geophysical Research Letters, 29:24 (2002), 82-1–82-4 | DOI

[6] M. Chaouachi, A. Falenty, K. Sell, F. Enzmann, M. Kersten, D. Haberthür, W.F. Kuhs, “Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy”, G-cubed, 16 (2015), 1711–1722

[7] M. I. Fokin, V. V. Nikitin, A. A. Duchkov, “Quantitative analysis of dynamic CT imaging of methanehydrate formation with a hybrid machine learning approach”, J. of Synchrotron Radiation, 30 (2023), 978–988 | DOI

[8] A. Gupta, T. J. Kneafsey, G. J. Moridis, Y. Seol, M. B. Kowalsky, J. Sloan, “Composite thermal conductivity in a large heterogeneous porous methane hydrate sample”, J. of Physical Chemistry B, 110:33 (2006), 16384–16392 | DOI

[9] D. Crandall, G. Bromhal, D. H. Smith, “Conversion of a micro-CT scanned rock fracture into a useful model”, Fluids Eng. Division Summer Meeting, 43727 (2009), 2101–2108

[10] Q. Liu, M. Sun, X. Sun, B. Liu, M. Ostadhassan, W. Huang, Z. Pan, “Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review”, Gas Science and Engineering, 113 (2023), 204967 | DOI

[11] S. Ishutov, F. J. Hasiuk, C. Harding, J. N. Gray, “3D printing sandstone porosity models”, Interpretation, 3:3 (2015), SX49–SX61 | DOI

[12] Y. Zhang, J. Qian, “Dual contouring for domains with topology ambiguity”, Computer Methods in Applied Mechanics and Engineering, 217 (2012), 34–45 | DOI

[13] Z. Chen, A. Tagliasacchi, T. Funkhouser, H. Zhang, “Neural dual contouring”, ACM Transactions on Graphics (TOG), 41:4 (2022), 1–13

[14] A. Cong, Y. Liu, D. Kumar, W. Cong, G. Wang, “Geometrical modeling using multiregional marching tetrahedra for bioluminescence tomography”, Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display, Proc. SPIE, 5744, 2005, 756–763 | DOI

[15] J. Congote, A. Moreno, I. Barandiaran, J. Barandiaran, O. Ruiz, “Extending marching cubes with adaptative methods to obtain more accurate isosurfaces”, Intern. Conf. on Comp. Vision, Imaging Comp. Graphics, Springer, Berlin–Heidelberg, 2009, 35–44

[16] A. B. Andhumoudine, X. Nie, Q. Zhou, J. Yu, O. I. Kane, L. Jin, R. R. Djaroun, “Investigation of coal elastic properties based on digital core technology and finite element method”, Advances in Geo-Energy Research, 5:1 (2021), 53–63 | DOI

[17] D. Wu, S. Li, Y. Guo, L. Liu, Z. Wang, “A novel model of effective thermal conductivity for gas hydrate bearing sediments integrating the hydrate saturation and pore morphology evolution”, Fuel, 324 (2022), 124825 | DOI

[18] L. Yang, J. Zhao, W. Liu, M. Yang, Y. Song, “Experimental study on the effective thermal conductivity of hydrate-bearing sediments”, Energy, 79 (2015), 203–211 | DOI

[19] M. Sanchez, C. Santamarina, M. Teymouri, X. Gai, “Coupled Numerical Modeling of Gas Hydrate-Bearing Sediments: From Laboratory to Field-Scale Analyses”, JGR Solid Earth, 123:12 (2018), 10326–10348 | DOI

[20] V. Alexiades, “Methane hydrate formation and decomposition”, Conference 17, Electronic J. of Differential Equations, 2009, 1–11 | Zbl

[21] N. J. English, “Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate”, Molecular Physics, 106:15 (2008), 1887–1898 | DOI

[22] S. Sun, L. Gu, Z. Yang, Y. Li, C. Zhang, “A new effective thermal conductivity model of methane hydratebearing sediments considering hydrate distribution patterns”, International Journal of Heat and Mass Transfer, 183:26 (2022), 122071 | DOI

[23] D. Wu, S. Li, Y. Guo, L. Liu, Z. Wang, “A novel model of effective thermal conductivity for gas hydratebearing sediments integrating the hydrate saturation and pore morphology evolution”, Fuel, 324 (2022), 124825 | DOI

[24] G. Lei, J. Tang, L. Zhang, Q. Wu, L. Jun, Effective Thermal Conductivity for Hydrate-Bearing Sediments Under Stress and Local Thermal Stimulation Conditions: A Novel Analytical Model https://ssrn.com/abstract=4547757 | DOI

[25] Y. R. Efendiev, T. Y. Hou, X. H. Wu., “Convergence of a nonconforming multiscale finite element method”, SIAM J. Numer. Anal., 37 (2000), 888–910 | DOI | MR | Zbl

[26] A. Abdulle, “Multiscale method based on discontinuous Galerkin methods for homogenization problems”, C. R. Math. Acad. Sci. Paris, 346 (2008), 97–102 | DOI | MR | Zbl

[27] J. Droniou, R. Eymard, T. Gallouet, R. Herbin, “Non-conforming Finite Elements on Polytopal Meshes”, Polyhedral Methods in Geosciences, 27 (2021), 1–35 | DOI | MR | Zbl

[28] M. I. Epov, E. P. Shurina, D. V. Dobrolyubova, A. Yu. Kutishcheva, S. I. Markov, N. V. Shtabel, E. I. Shtanko, “Determination of the Effective Electrical Conductivity of a Fluid-Saturated Core from Computed Tomography Data”, Izvestiya, Physics of the Solid Earth, 59:5 (2023), 672–681 | DOI | MR

[29] E. P. Shurina, A. Yu. Kutishcheva, “Parallel heterogeneous multiscale finite element method”, Highperfomance computing systems and technologies, 1:8 (2018), 118–122

[30] Y. R. Efendiev, The multiscale finite element method (MsFEM) and its applications, Springer, California Institute of Technology, New York, 1999, 234 pp. | MR

[31] D. V. Dobrolubova, E. I. Shtanko, “Hierarchical Volume Mesh Model of Heterogeneous Media Based on Non-Destructive Imaging Data”, Communications in Computer and Information Science, 1733 (2022), 196–205 | DOI