Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_4_a8, author = {M. E. Madaliev}, title = {Research of the quality of adaptive grids to calculate separate flows on a two-fluid turbulence model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {133--150}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a8/} }
TY - JOUR AU - M. E. Madaliev TI - Research of the quality of adaptive grids to calculate separate flows on a two-fluid turbulence model JO - Matematičeskoe modelirovanie PY - 2024 SP - 133 EP - 150 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a8/ LA - ru ID - MM_2024_36_4_a8 ER -
M. E. Madaliev. Research of the quality of adaptive grids to calculate separate flows on a two-fluid turbulence model. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 133-150. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a8/
[1] B. A. Younis, V. P. Przulj, “Computation of turbulent vortex shedding”, Comput. Mech., 37 (2006), 408–425 | DOI | Zbl
[2] W. Rodi, J. H. Ferziger, M. Breuer, M. Pourquie, “Status of large eddy simulation; results of a workshop”, ASME J. of Fluids Engineering, 119:2 (1997), 248–262 | DOI | MR
[3] G. Bosch, W. Rodi, “Simulation of vortex a shedding past a square cylinder with different turbulence models”, International J. for Numerical Methods in Fluids, 28 (1998), 601–616 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[4] C. G. Speziale, T. B. Gatski, S. Sarkar, “On testing models for the pressure-strain correlation of turbulence using direct simulations”, Physics of Fluids, 4 (1992), 2887–2899 | DOI
[5] A. K. Saha, K. Muralidhar, G. Biswas, “Transition and chaos in two-dimensional flow past a square cylinder”, Journal of Engineering Mechanics, 126 (2000), 523–532 | DOI
[6] A. K. Saha, G. Biswas, K. Muralidhar, “Three-dimensional study of flow past a square cylinder at low Reynolds numbers”, International J. of Heat and Fluid Flow, 24 (2003), 54–66 | DOI
[7] F. X. Trias, A. Gorobets, A. Oliva, “Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study”, Computers Fluids, 123 (2015), 87– 98 | DOI | MR | Zbl
[8] A. K. Saha, G. Biswas, K. Muralidhar, “Numerical study of the turbulent unsteady wake be-hind a partially enclosed square cylinder using RANS”, Computer Methods in Applied Mechanics and Engineering, 178 (1999), 323–341 | DOI | Zbl
[9] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, “A new $k$-$\varepsilon$ eddy viscosity model for high Reynolds number turbulent flows”, Computers Fluids, 24 (1995), 227-238 | DOI | Zbl
[10] N. G. Wright, G. J. Easom, “Non-linear $k$-$\varepsilon$ turbulence model results for flow over a building at full-scale”, Applied Mathematical Modelling, 27 (2003), 1013–1033 | DOI | Zbl
[11] Q. Li, Q. W. Ma, S. Yan, “Investigations on the Feature of Turbulent Viscosity Associated with Vortex Shedding”, Procedia Engineering, 126 (2015), 73–77 | DOI
[12] M. Elkhoury, “Assessment of turbulence models for the simulation of turbulent flows past bluff bodies”, J. of Wind Engineering and Industrial Aerodynamics, 154 (2016), 10–20 | DOI
[13] S. Murakami, A. Mochida, “On turbulent vortex shedding flow past 2D square cylinder pre-dicted by CFD”, J. of Wind Engineering and Industrial Aerodynamics, 54–55 (1995), 191–211 | DOI
[14] D. Bouris, G. Bergeles, “2D LES of vortex shedding from a square cylinder”, Journal of Wind Engineering and Industrial Aerodynamics, 80 (1999), 31–46 | DOI
[15] D. Yu, A. Kareem, “Numerical simulation of flow around rectangular prism”, Journal of Wind Engineering and Industrial Aerodynamics, 67–68 (1997), 195–208
[16] Y. Cao, T. Tamura, “Large-eddy simulations of flow past a square cylinder using structured and unstructured grids”, Computers Fluids, 137 (2016), 36–54 | DOI | MR | Zbl
[17] S. Yagmur, S. Dogan, M. H. Aksoy, E. Canli, M. Ozgoren, “Experimental and numerical in-vestigation of flow structures around cylindrical bluff bodies”, EPJ Web of Conferences, Czech Republic, The European Physical Journal, 2014, 02113, 7 pp.
[18] W. Bai, C. G. Mingham, D. M. Causon, L. Qian, “Detached eddy simulation of turbulent flow around square and circular cylinders on Cartesian cut cells”, Ocean Eng., 117 (2016), 1–14 | DOI
[19] W. Rodi, “On the simulation of turbulent flow past bluff bodies”, J. of Wind Engineering and Industrial Aerodynamics, 46–47 (1993), 3–19 | DOI
[20] M. R. Rastan et al, “Onset of vortex shedding from a bluff body modified from square cylinder to normal flat plate”, Ocean Engineering, 244 (2022), 110393 | DOI
[21] W. Rodi, “Comparison of LES and RANS calculations of the flow around bluff bodies”, Journal of Wind Engineering and Industrial Aerodynamics, 69–71 (1997), 55–75 | DOI
[22] A. Rusdin, “Computation of turbulent flow around a square block with standard and modified $k$-$\varepsilon$ turbulence models”, Intern. J. of Automotive and Mechanical Eng., 14:1 (2017), 3938–3953 | DOI
[23] Z. Malikov, “Mathematical Model of Turbulence Based on the Dynamics of Two Fluids”, Applied Mathematical Modeling, 82 (2020), 409–436 | DOI | MR | Zbl
[24] Z. M. Malikov, “Mathematical model of turbulent heat transfer based on the dynamics of two fluids”, Applied Mathematic Modeling, 91 (2021), 186–213 | DOI | MR | Zbl
[25] Z. M. Malikov, “Modeling a turbulent multicomponent fluid with variable density using a two-fluid approach”, Applied Mathematical Modelling, 104 (2022), 34–49 | DOI | MR | Zbl
[26] Z. M. Malikov, M. E. Madaliev, “Numerical simulation of separated flow past a square cylinder based on a two-fluid turbulence model”, Journal of Wind Engineering and Industrial Aerodynamics, 231 (2022), 105171 | DOI | MR
[27] Z. M. Malikov, M. E. Madaliev, “Numerical Simulation of Turbulent Flows Based on Modern Turbulence Models”, Computational Math. and Math. Physics, 62:10 (2022), 1707–1722 | DOI | MR | Zbl
[28] Z. M. Malikov, A. A. Mirzoev, M. E. Madaliev, “Numerical simulation of the mixing layer problem based on a new two-fluid turbulence model”, Journal of Computational Applied Me-chanics, 53:2 (2022), 282–296 | MR
[29] M. J. Baines, M. J. Baines, Moving finite elements, Clarendon Press Oxford, 1994 | MR | Zbl
[30] W. Huang, R. D. Russell, “Adaptive moving mesh methods”, Springer Science Business Media, 174 (2010) | MR | Zbl
[31] D. F. Hawken, J. J. Gottlieb, J. S. Hansen, “Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations”, Journal of Computational Physics, 95:2 (1991), 254–302 | DOI | MR | Zbl
[32] T. Tang, “Moving mesh methods for computational fluid dynamics”, Contemporary mathe-matics, 383:8 (2005), 141–173 | DOI | MR | Zbl
[33] D. A. Lyn, S. Einav, W. Rodi, J. H. Park, “A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder”, J. of Fluid Mechanics, 304 (1995), 285–319 | DOI
[34] W. Shyy, “An adaptive grid method for Navier-Stokes flow computation II: Grid addition”, Applied numerical mathematics, 2:1 (1986), 9–19 | DOI | MR | Zbl
[35] W. Shyy, S. S. Tong, S. M. Correa, “Numerical recirculating flow calculation using a body-fitted coordinate system”, Numerical Heat Transfer, 8:1 (1985), 99–113 | DOI | Zbl
[36] F. Basile et al, “A high-order h-adaptive discontinuous Galerkin method for unstructured grids based on a posteriori error estimation”, AIAA Scitech 2021 Forum, 2021, 1696
[37] W. Huang, X. Zhan, “Adaptive moving mesh modeling for two dimensional groundwater flow and transport”, Contemporary Mathematics, 383, 2005, 239–252 | DOI | MR | Zbl
[38] K. Ou, C. Liang, A. Jameson, “High-Order Spectral Difference Method for the Navier-Stokes Equation on Unstructured Moving Deformable Grid”, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, 541 | MR
[39] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor Francis, 1980
[40] B. A. Abdukarimov, A. A. Kuchkarov, “Numerical Solution of the Mathematical Model of Air Flow Movement in a Solar Air Heater with a Concave Tube”, Applied Solar Energy, 58:1 (2022), 109–115 | DOI
[41] B. Abdukarimov, S. O'tbosarov, A. Abdurazakov, “Investigation of the use of new solar air heaters for drying agricultural products”, E3S Web of Conferences. EDP Sciences, 264 (2021), 01031 | DOI
[42] F. Kh. Nazarov, “Comparing turbulence models for swirling flows”, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2 (2021), 95
[43] Z. M. Malikov, F. K. Nazarov, “Numerical Study of a Two-Phase Flow in a Centrifugal Dust Collector Based on a Two-Fluid Turbulence Model”, Mathematical Models and Computer Simulations, 13 (2021), 790–797 | DOI | MR
[44] D. W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Indust. Appl. Math., 3 (1955), 28–41 | DOI | MR | Zbl