Numerical experiments with \emph{SLAV-NEMO} atmosphere-ocean coupled model
Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 116-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of numerical experiments with the atmosphere, ocean and sea ice coupled model, which consists of semi-Lagrangian atmospheric model SLAV and Nucleus for European Modelling of the Ocean (NEMO) model. Models are coupled using OASIS3-MST software. The results of 20 days lead time numerical experiments with the coupled model are discussed and analyzed. In particular, the sea surface and deep ocean spatiotemporal variability has been discussed.
Keywords: atmosphere-ocean coupled model, SLAV model, NEMO model.
@article{MM_2024_36_4_a7,
     author = {R. Yu. Fadeev and K. P. Belyaev and A. A. Kuleshov and Yu. D. Resnyanskii and I. N. Smirnov and B. S. Strukov and A. A. Zelenko},
     title = {Numerical experiments with {\emph{SLAV-NEMO}} atmosphere-ocean coupled model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--132},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a7/}
}
TY  - JOUR
AU  - R. Yu. Fadeev
AU  - K. P. Belyaev
AU  - A. A. Kuleshov
AU  - Yu. D. Resnyanskii
AU  - I. N. Smirnov
AU  - B. S. Strukov
AU  - A. A. Zelenko
TI  - Numerical experiments with \emph{SLAV-NEMO} atmosphere-ocean coupled model
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 116
EP  - 132
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a7/
LA  - ru
ID  - MM_2024_36_4_a7
ER  - 
%0 Journal Article
%A R. Yu. Fadeev
%A K. P. Belyaev
%A A. A. Kuleshov
%A Yu. D. Resnyanskii
%A I. N. Smirnov
%A B. S. Strukov
%A A. A. Zelenko
%T Numerical experiments with \emph{SLAV-NEMO} atmosphere-ocean coupled model
%J Matematičeskoe modelirovanie
%D 2024
%P 116-132
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a7/
%G ru
%F MM_2024_36_4_a7
R. Yu. Fadeev; K. P. Belyaev; A. A. Kuleshov; Yu. D. Resnyanskii; I. N. Smirnov; B. S. Strukov; A. A. Zelenko. Numerical experiments with \emph{SLAV-NEMO} atmosphere-ocean coupled model. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 116-132. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a7/

[1] N. N. Moiseyev, Chelovek i noosfera, Molodaya gvardiya, M., 1990, 460 pp.

[2] Argo international program, https://argo.ucsd.edu

[3] S. M. Griffies, A. Adcroft, R. W. Hallberg, “A primer on the vertical Lagrangian remap method in ocean models based on finite volume generalized vertical coordinates”, Journal of Advances in Modeling Earth Systems, 12:10 (2020), e2019MS001954 | DOI

[4] D. A. Cottrill, H. Hendon, E. P. Lim, S. Langford et al, “Seasonal forecasting in the Pacific using the coupled model POAMA-2”, Weather and Forecasting, 28 (2013), 668–680 | DOI

[5] F. Vitart, M A. Balmaseda, L. Ferranti, M. Fuentes, “The next extended-range configuration for IFS Cycle 48r1”, ECMWF Newsletter, 2002, no. 173, 23–28

[6] D. Olonscheck, L. Suarez-Gutierrez, S. Milinski et al, “The new Max Planck Institute Grand Ensemble with CMIP6 forcing and high-frequency model output”, Journal of Advances in Modeling Earth Systems, 15 (2023), e2023MS003790 | DOI

[7] E. M. Volodin, E. V. Mortikov, S. V. Kostrykin et al, “Simulation of the present day climate with the climate model INMCM5”, Clim. Dyn., 49 (2017), 3715–3734 | DOI

[8] E.M. Volodin, “Possible climate change in Russia in the 21st century based on the INM-CM5-0 climate model”, Rus. Meteorol. and Hydrol., 47:5 (2022), 327–333

[9] V. M. Kattsov, I. M. Shkol'nik, S. V. Yefimov i dr., “Razvitiye tekhnologiy veroyatnostnogo prognozirovaniya regional'nogo klimata na territorii Rossii i postroyeniye na yego osnove stsenarnykh prognozov izmeneniya klimaticheskikh vozdeystviy na otrasli ekonomiki. Chast'1: Postanovka zadach i schetnyye eksperimenty”, Trudy Glavnoy geofizicheskoy ob-servatorii im. A.I. Voyeykova, 583 (2016), 7–29

[10] R. Yu. Fadeev, K. V. Ushakov, M. A. Tolstykh, R. A. Ibrayev, “Design and development of the SLAV-INMIO-CICE coupled model for seasonal prediction and climate research”, Rus. J. of Num. An. and Math. Mod., 33:6 (2018), 333–340 | MR | Zbl

[11] M. Tolstykh, J-F. Geleyn, E. Volodin, N. Bogoslovsky, R. M. Vilfand et al, “Development of the multiscale version of the SLAV global atmosphere model”, Russian Meteorology and Hydrology, 40 (2015), 374–382 | DOI

[12] G. Madec and the NEMO team, NEMO ocean engine, Note du Pole de modélisation de l'Institut Pierre-Simon Laplace, No 27, 2016

[13] S. Valcke, “The OASIS3 coupler: a European climate modelling community software”, Geosci. Model Devel., 2013, no. 6, 373–388 | DOI

[14] K. P. Belyaev, A. A. Kuleshov, Yu. D. Resnyanskii, I. N. Smirnov, R. Yu. Fadeev, “Numerical experiments with the NEMO ocean circulation model and the assimilation of observational data from Argo”, Mathematical Models and Computer Simulations, 15:5 (2023), 842–849 | DOI | DOI | MR | Zbl

[15] M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, G. Goyman et al, “Multiscale global atmos-phere model SL-AV: the results of medium-range weather forecasts”, Russian Meteorology and Hydrology, 43:11 (2018), 773–779 | DOI

[16] V. N. Stepanov, Y. D. Resnyanskii, B. S. Strukov et al, “Large-scale Ocean Circulation and Sea Ice Characteristics Derived from Numerical Experiments with the NEMO Model”, Russ. Meteorol. Hydrol., 44 (2019), 33–44 | DOI

[17] A. A. Zelenko, R. M. Vilfand, Yu. D. Resnyanskii, B. S. Strukov, M. D. Tsyrulnikov, P. I. Svirenko, “Sistema usvoeniya okeanograficheskikh dannykh i retrospektivnyi analiz gidrofizicheskikh polei Mirovogo okeana”, Izvestiya RAN. Fizika atmosfery i okeana, 52:4 (2016), 501–513 | DOI

[18] SCRIP project at GitHub, https://github.com/SCRIP-Project/SCRIP

[19] A. Piacentini, E. Maisonnave, G. Jonville, L. Coquart, S. Valcke, A parallel SCRIP interpo-lation library for OASIS, GLOBC-TR-PIANCENTINI-cmgc_18_34.pdf

[20] M. D. Tsyrulnikov, P. I. Svirenko, D. R. Gayfulin, M. E. Gorbunov, A. B. Uspensky, “Development of the data assimilation scheme of the Hydrometcentre of Russia”, Proc. Hydrometeorolog-ical Res. and For. of Hydrometcentre of Russia, 2019, no. 4 (374), 112–126

[21] V. Bagatinsky, N. Diansky, “Contributions of climate changes in temperature and salinity to the formation of North Atlantic thermohaline circulation trends in 1951-2017”, Moscow University Physics Bulletin, 77:3 (2022), 564 | DOI