Method for constructing high-order approximation schemes for hyperbolic equations
Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 92-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing high-order difference schemes of approximation is proposed for solving the simplest hyperbolic type equation, namely, for the linear transport equation. Based on the developed method, the Rusanov, Warming-Cutler-Lomax schemes are analyzed and new third-order difference schemes are constructed. For the difference schemes proposed in this paper, a method for monotonizing the solution is proposed. The monotonization of the numerical solution is carried out by lowering the order of the difference scheme at the points of oscillation of the numerical solution. This is achieved by nesting the template of lower spatial derivatives, which are a subset of the templates of difference schemes of higher derivatives according to the “matryoshka principle”. The results of numerical experiments for known test problems are presented.
Keywords: finite difference scheme, higher order of approximation, monotone schemes.
@article{MM_2024_36_4_a5,
     author = {I. V. Popov},
     title = {Method for constructing high-order approximation schemes for hyperbolic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {92--102},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a5/}
}
TY  - JOUR
AU  - I. V. Popov
TI  - Method for constructing high-order approximation schemes for hyperbolic equations
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 92
EP  - 102
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a5/
LA  - ru
ID  - MM_2024_36_4_a5
ER  - 
%0 Journal Article
%A I. V. Popov
%T Method for constructing high-order approximation schemes for hyperbolic equations
%J Matematičeskoe modelirovanie
%D 2024
%P 92-102
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a5/
%G ru
%F MM_2024_36_4_a5
I. V. Popov. Method for constructing high-order approximation schemes for hyperbolic equations. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 92-102. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a5/

[1] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskikh modelei, Izd-vo MGTU im. N.E. Baumana, M., 2010

[2] I. B. Petrov, A. I. Lobanov, Lektsii po vychislitelnoi matematike, Internet-Universitet Informatsionnykh tekhnologii, BINOM. Laboratoriia znanii, M., 2006

[3] M. P. Galanin, T. G. Elenina, “Sravnitelnyi analiz raznostnykh skhem dlia lineinogo uravne-niia perenosa”, Prepr. Inst. prikl. matem. im. M.V. Keldysha RAN, 1998

[4] M. P. Galanin, T. G. Elenina, “Testirovanie raznostnykh skhem dlia lineinogo uravneniia perenosa”, Prepr. Inst. prikl. matem. im. M.V. Keldysha RAN, 1999

[5] V. Ia. Goldin, N. N. Kalitkin, T. V. Shishova, “Nelineinye raznostnye skhemy dlia giperbolicheskikh uravnenii”, ZhVM i MF, 5:5 (1965), 938–944

[6] R. P. Fedorenko, “Primenenie raznostnykh skhem vysokoi tochnosti dlia chislennogo resheniia giperbolicheskikh uravnenii”, ZhVM i MF, 2:6 (1962), 1122–1128 | Zbl

[7] Boris Dzh.P., Buk D.L., Controlled fusion, Methods in computational physic: Advances in Research and Applications, 16, Academic press, New York–San Francisco–London

[8] K. V. Viaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poriadka approksimatsii dlia sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1:5 (1989), 95–120 | MR | Zbl

[9] K. V. Viaznikov, V. F. Tishkin, A. P. Favorskii, M. Iu. Shashkov, “Kvazimonotonnye raznostnye skhemy povyshennogo poriadka tochnosti”, Prepr. IPM im. M.V. Keldysha RAN, 1987, 036, 27 pp.

[10] A. A. Ivanov, V. F. Tishkin, A. P. Favorskii, A. N. Iatsuk, “Postroenie kvazimonotonnoi skhemy povyshennogo poriadka approksimatsii dlia uravneniia perenosa”, Prepr. IPM im. M.V. Keldysha RAN, 1993, 065, 25 pp.

[11] V. M. Goloviznin, S. A. Karabasov, Metody pryzhkovogo perenosa dlia chislennogo resheniia giperbolicheskikh uravnenii. Tochnyi algoritm dlia modelirovaniia konvektsii na eilerovykh setkakh, Prepr. IBRAE, No IBRAE-2000-04, 2002, 40 pp.

[12] V. M. Goloviznin, S. A. Karabasov, “Nelineinaia korrektsiia skhemy «Kabare»”, Matematich-eskoe modelirovanie, 10:12 (1998), 107–123

[13] J. Neumann, R. Richtmyer, “A method for the numerical calculation of hydrodynamical shocks”, J. Appl. Phys., 21:3 (1950), 232–237 | DOI | MR | Zbl

[14] I. V. Popov, I. V. Friazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, Krasand, M., 2015

[15] R. D. Richtmyer, Morton. K.W., Difference methods for initial-value problems, Second Ed., Interscience publishers, New York–London–Sydney, 1967 | MR | Zbl