Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_4_a5, author = {I. V. Popov}, title = {Method for constructing high-order approximation schemes for hyperbolic equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {92--102}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a5/} }
I. V. Popov. Method for constructing high-order approximation schemes for hyperbolic equations. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 92-102. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a5/
[1] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskikh modelei, Izd-vo MGTU im. N.E. Baumana, M., 2010
[2] I. B. Petrov, A. I. Lobanov, Lektsii po vychislitelnoi matematike, Internet-Universitet Informatsionnykh tekhnologii, BINOM. Laboratoriia znanii, M., 2006
[3] M. P. Galanin, T. G. Elenina, “Sravnitelnyi analiz raznostnykh skhem dlia lineinogo uravne-niia perenosa”, Prepr. Inst. prikl. matem. im. M.V. Keldysha RAN, 1998
[4] M. P. Galanin, T. G. Elenina, “Testirovanie raznostnykh skhem dlia lineinogo uravneniia perenosa”, Prepr. Inst. prikl. matem. im. M.V. Keldysha RAN, 1999
[5] V. Ia. Goldin, N. N. Kalitkin, T. V. Shishova, “Nelineinye raznostnye skhemy dlia giperbolicheskikh uravnenii”, ZhVM i MF, 5:5 (1965), 938–944
[6] R. P. Fedorenko, “Primenenie raznostnykh skhem vysokoi tochnosti dlia chislennogo resheniia giperbolicheskikh uravnenii”, ZhVM i MF, 2:6 (1962), 1122–1128 | Zbl
[7] Boris Dzh.P., Buk D.L., Controlled fusion, Methods in computational physic: Advances in Research and Applications, 16, Academic press, New York–San Francisco–London
[8] K. V. Viaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poriadka approksimatsii dlia sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1:5 (1989), 95–120 | MR | Zbl
[9] K. V. Viaznikov, V. F. Tishkin, A. P. Favorskii, M. Iu. Shashkov, “Kvazimonotonnye raznostnye skhemy povyshennogo poriadka tochnosti”, Prepr. IPM im. M.V. Keldysha RAN, 1987, 036, 27 pp.
[10] A. A. Ivanov, V. F. Tishkin, A. P. Favorskii, A. N. Iatsuk, “Postroenie kvazimonotonnoi skhemy povyshennogo poriadka approksimatsii dlia uravneniia perenosa”, Prepr. IPM im. M.V. Keldysha RAN, 1993, 065, 25 pp.
[11] V. M. Goloviznin, S. A. Karabasov, Metody pryzhkovogo perenosa dlia chislennogo resheniia giperbolicheskikh uravnenii. Tochnyi algoritm dlia modelirovaniia konvektsii na eilerovykh setkakh, Prepr. IBRAE, No IBRAE-2000-04, 2002, 40 pp.
[12] V. M. Goloviznin, S. A. Karabasov, “Nelineinaia korrektsiia skhemy «Kabare»”, Matematich-eskoe modelirovanie, 10:12 (1998), 107–123
[13] J. Neumann, R. Richtmyer, “A method for the numerical calculation of hydrodynamical shocks”, J. Appl. Phys., 21:3 (1950), 232–237 | DOI | MR | Zbl
[14] I. V. Popov, I. V. Friazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, Krasand, M., 2015
[15] R. D. Richtmyer, Morton. K.W., Difference methods for initial-value problems, Second Ed., Interscience publishers, New York–London–Sydney, 1967 | MR | Zbl