Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_4_a3, author = {R. R. Polekhina and E. B. Savenkov}, title = {Numerical study of the discontinuous {Galerkin} method for solving the {Baer--Munziato} equations with instantaneous mechanical relaxation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--76}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/} }
TY - JOUR AU - R. R. Polekhina AU - E. B. Savenkov TI - Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation JO - Matematičeskoe modelirovanie PY - 2024 SP - 53 EP - 76 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/ LA - ru ID - MM_2024_36_4_a3 ER -
%0 Journal Article %A R. R. Polekhina %A E. B. Savenkov %T Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation %J Matematičeskoe modelirovanie %D 2024 %P 53-76 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/ %G ru %F MM_2024_36_4_a3
R. R. Polekhina; E. B. Savenkov. Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 53-76. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/
[1] C. W. Hirt, B. D. Nichols, “Volume of Fluid (VoF) method for the dynamics of free boundaries”, J. Comput. Phys, 39:1 (1981), 201–25 | DOI
[2] R. P. Fedkiw, T. Aslam, B. Merriman, S. A. Osher, “Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)”, Journal of Computational Physics, 152:2 (1999), 457–492 | DOI | MR | Zbl
[3] R. P. Fedkiw, T. Aslam, S. Xu, “The Ghost Fluid Method for Deflagration and Detonation Discontinuities”, Journal of Computational Physics, 154:2 (1999), 393–427 | DOI | MR | Zbl
[4] S. J. Osher, R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002, 273 pp. | MR
[5] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1999 | MR | Zbl
[6] E. Olsson, G. Kreiss, S. Zahedi, “A conservative level set method for two phase flow II”, Journal of Computational Physics, 225:1 (2007), 785–807 | DOI | MR | Zbl
[7] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials”, International journal of multiphase flow, 12:6 (1986), 861–889 | DOI | MR | Zbl
[8] N. Favrie, S. Gavrilyuk, R. Saurel, “Solid-fluid diffuse interface model in cases of extreme deformations”, J. Comput. Phys., 228:16 (2009), 6037–6077 | DOI | MR | Zbl
[9] Kapila, S. Son, J. Bdzil, R. Menikoff, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone”, Phys. Fluids, 9:12 (1997), 3885–3897 | DOI
[10] G. Dal Maso, P. G. Lefloch, F. Mura, “Definition and weak stability of nonconservative products”, Journal de mathématiques pures et appliquées, 74:6 (1995), 483–548 | MR | Zbl
[11] M. J. Castro, P. G. LeFloch, M. Luz, Muñoz-Ruiz, C. Parés, “Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes”, Journal of Computational Physics, 227:17 (2008), 8107–8129 | DOI | MR | Zbl
[12] M. De Lorenzo, M. Pelanti, P. Lafon, “HLLC-type and path-conservative schemes for a single-velocity six-equation two-phase flow model: A comparative study”, Applied Mathematics and Computation, 333 (2018), 95–117 | DOI | MR | Zbl
[13] M. Dumbser, D. S. Balsara, “A new efficient formulation of the hllem riemann solver for general conservative and non-conservative hyperbolic systems”, Journal of Computational Physics, 304 (2016), 275–319 | DOI | MR | Zbl
[14] F. Kemm, E. Gaburro, F. Thein, M. Dumbser, “A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model”, Computers Fluids, 204 (2020), 104536 | DOI | MR | Zbl
[15] A. Serezhkin, I. Menshov, “On solving the Riemann problem for non-conservative hyperbolic systems of partial differential equations”, Computers Fluids, 210 (2020), 104675 | DOI | MR | Zbl
[16] Cockburn, C. W. Shu, “The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws”, ESAIM Math. Model. Numer. Anal., 25:3 (1991), 337–361 | DOI | MR | Zbl
[17] R. R. Polekhina, M. V. Alekseev, E. B. Savenkov, “Validation of a Computational Algorithm Based on the Discontinuous Galerkin Method for the Baer-Nunziato Relaxation Model”, Differential Equations, 58:7, 966–984 | DOI | MR | Zbl
[18] R. R. Polekhina, B. A. Korneev, E. B. Savenkov, “Numerical study of multiphase hyperbolic models”, Journal of Computational and Applied Mathematics, 423 (2023), 114925 | DOI | MR | Zbl
[19] B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov, “Numerical study of two-phase hyperbolic models”, Mathematical Models and Computer Simulations, 13 (2021), 1002–1013 | DOI | DOI | MR
[20] R. R. Tukhvatullina, M. V. Alekseev, E. B. Savenkov, “Numerical Solution of the Baer-Nunziato Relaxation Model Using the Discontinuous Galerkin Method”, Differential Equations, 57 (2021), 959–973 | DOI | DOI | MR | Zbl
[21] J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, D. Scott, “Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues”, Physics of Fluids, 11:2 (1999), 378–402 | DOI | MR | Zbl
[22] N. Andrianov, G. Warnecke, “The Riemann problem for the Baer-Nunziato two-phase flow model”, Journal of Computational Physics, 195:2 (2004), 434–464 | DOI | MR | Zbl
[23] F. Daude, R. A. Berry, R. A. Galon, “A finite-volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer-Nunziato model”, Computer Methods in Applied Mechanics and Engineering, 354 (2019), 820–849 | DOI | MR | Zbl
[24] R. Saurel, R. Abgrall, “A simple method for compressible multifluid flows”, SIAM J. Sci. Comput., 21:3 (1999), 1115–1145 | DOI | MR | Zbl
[25] Yu. V. Yanilkin, Yu. A. Bondarenko, E. A. Goncharov, A. R. Guzhova, V. Yu. Kolobyanin, V. N. Sofronov, V. P. Statsenko, Tests for hydrocodes simulating shock wave flows in multi-component media, v. 1, Gas dynamics, FSUE «RFNC-VNIIEF», Sarov, 2017, 169 pp.
[26] P. Le Floch, T. P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form”, Forum Mathematicum, 5 (1993), 261–280 | DOI | MR | Zbl
[27] X. Zhong, C. W. Shu, “A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods”, J. Comput. Phys., 232:1 (2013), 397–415 | DOI | MR
[28] X. Zhong, C. W. Shu, “On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes”, J. Comput. Phys., 229:23 (2010), 8918–8934 | DOI | MR
[29] L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, J. E. Flaherty, “Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws”, Applied Numerical Mathematics, 48 (2004), 323–338 | DOI | MR | Zbl
[30] I. S. Menshov, A. A. Serezhkin, “Numerical Model of Multiphase Flows Based on Sub-Cell Resolution of Fluid Interfaces”, Math. and Math. Physics, 62 (2022), 1723–1742 | DOI | MR | Zbl