Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation
Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 53-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to a numerical study of the discontinuous Galerkin method for solving the two-phase Baer–Nunziato equations with instantaneous mechanical relaxation. From a mathematical point of view, the system of equations is a non-conservative hyperbolic system of equations. Unlike conservative hyperbolic systems of equations for which numerical methods are well known and developed, the numerical solution of non-conservative hyperbolic systems is a more complex problem that requires a generalization of the Godunov method. The computational algorithm is based on solving the hyperbolic part by a 2nd order discontinuous Galerkin method with path-conservative HLL or HLLEM numerical flows. To monotonize the solution, the WENO-S limiter is used, which is applied to the conservative variables of the model. To take into account relaxation processes, a new algorithm for instantaneous relaxation is proposed, within which the determination of equilibrium values of velocity and thermodynamic variables is reduced to solving a system of algebraic equations. To test the proposed numerical algorithm, the results of numerical calculations are compared with known analytical solutions in one-dimensional formulations. To demonstrate the capabilities of the proposed algorithms, a spatially two-dimensional problem of flow around a step is considered, as well as a two-phase version of the triple point problem. The calculation results show that the proposed algorithm is robust and allows calculations for two-phase media with a density jump of $\sim$1000.
Keywords: two-phase media, shock waves, discontinuous Galerkin method, nonconservative scheme.
@article{MM_2024_36_4_a3,
     author = {R. R. Polekhina and E. B. Savenkov},
     title = {Numerical study of the discontinuous {Galerkin} method for solving the {Baer--Munziato} equations with instantaneous mechanical relaxation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--76},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/}
}
TY  - JOUR
AU  - R. R. Polekhina
AU  - E. B. Savenkov
TI  - Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 53
EP  - 76
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/
LA  - ru
ID  - MM_2024_36_4_a3
ER  - 
%0 Journal Article
%A R. R. Polekhina
%A E. B. Savenkov
%T Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation
%J Matematičeskoe modelirovanie
%D 2024
%P 53-76
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/
%G ru
%F MM_2024_36_4_a3
R. R. Polekhina; E. B. Savenkov. Numerical study of the discontinuous Galerkin method for solving the Baer--Munziato equations with instantaneous mechanical relaxation. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 53-76. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a3/

[1] C. W. Hirt, B. D. Nichols, “Volume of Fluid (VoF) method for the dynamics of free boundaries”, J. Comput. Phys, 39:1 (1981), 201–25 | DOI

[2] R. P. Fedkiw, T. Aslam, B. Merriman, S. A. Osher, “Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)”, Journal of Computational Physics, 152:2 (1999), 457–492 | DOI | MR | Zbl

[3] R. P. Fedkiw, T. Aslam, S. Xu, “The Ghost Fluid Method for Deflagration and Detonation Discontinuities”, Journal of Computational Physics, 154:2 (1999), 393–427 | DOI | MR | Zbl

[4] S. J. Osher, R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002, 273 pp. | MR

[5] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1999 | MR | Zbl

[6] E. Olsson, G. Kreiss, S. Zahedi, “A conservative level set method for two phase flow II”, Journal of Computational Physics, 225:1 (2007), 785–807 | DOI | MR | Zbl

[7] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials”, International journal of multiphase flow, 12:6 (1986), 861–889 | DOI | MR | Zbl

[8] N. Favrie, S. Gavrilyuk, R. Saurel, “Solid-fluid diffuse interface model in cases of extreme deformations”, J. Comput. Phys., 228:16 (2009), 6037–6077 | DOI | MR | Zbl

[9] Kapila, S. Son, J. Bdzil, R. Menikoff, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone”, Phys. Fluids, 9:12 (1997), 3885–3897 | DOI

[10] G. Dal Maso, P. G. Lefloch, F. Mura, “Definition and weak stability of nonconservative products”, Journal de mathématiques pures et appliquées, 74:6 (1995), 483–548 | MR | Zbl

[11] M. J. Castro, P. G. LeFloch, M. Luz, Muñoz-Ruiz, C. Parés, “Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes”, Journal of Computational Physics, 227:17 (2008), 8107–8129 | DOI | MR | Zbl

[12] M. De Lorenzo, M. Pelanti, P. Lafon, “HLLC-type and path-conservative schemes for a single-velocity six-equation two-phase flow model: A comparative study”, Applied Mathematics and Computation, 333 (2018), 95–117 | DOI | MR | Zbl

[13] M. Dumbser, D. S. Balsara, “A new efficient formulation of the hllem riemann solver for general conservative and non-conservative hyperbolic systems”, Journal of Computational Physics, 304 (2016), 275–319 | DOI | MR | Zbl

[14] F. Kemm, E. Gaburro, F. Thein, M. Dumbser, “A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model”, Computers Fluids, 204 (2020), 104536 | DOI | MR | Zbl

[15] A. Serezhkin, I. Menshov, “On solving the Riemann problem for non-conservative hyperbolic systems of partial differential equations”, Computers Fluids, 210 (2020), 104675 | DOI | MR | Zbl

[16] Cockburn, C. W. Shu, “The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws”, ESAIM Math. Model. Numer. Anal., 25:3 (1991), 337–361 | DOI | MR | Zbl

[17] R. R. Polekhina, M. V. Alekseev, E. B. Savenkov, “Validation of a Computational Algorithm Based on the Discontinuous Galerkin Method for the Baer-Nunziato Relaxation Model”, Differential Equations, 58:7, 966–984 | DOI | MR | Zbl

[18] R. R. Polekhina, B. A. Korneev, E. B. Savenkov, “Numerical study of multiphase hyperbolic models”, Journal of Computational and Applied Mathematics, 423 (2023), 114925 | DOI | MR | Zbl

[19] B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov, “Numerical study of two-phase hyperbolic models”, Mathematical Models and Computer Simulations, 13 (2021), 1002–1013 | DOI | DOI | MR

[20] R. R. Tukhvatullina, M. V. Alekseev, E. B. Savenkov, “Numerical Solution of the Baer-Nunziato Relaxation Model Using the Discontinuous Galerkin Method”, Differential Equations, 57 (2021), 959–973 | DOI | DOI | MR | Zbl

[21] J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, D. Scott, “Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues”, Physics of Fluids, 11:2 (1999), 378–402 | DOI | MR | Zbl

[22] N. Andrianov, G. Warnecke, “The Riemann problem for the Baer-Nunziato two-phase flow model”, Journal of Computational Physics, 195:2 (2004), 434–464 | DOI | MR | Zbl

[23] F. Daude, R. A. Berry, R. A. Galon, “A finite-volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer-Nunziato model”, Computer Methods in Applied Mechanics and Engineering, 354 (2019), 820–849 | DOI | MR | Zbl

[24] R. Saurel, R. Abgrall, “A simple method for compressible multifluid flows”, SIAM J. Sci. Comput., 21:3 (1999), 1115–1145 | DOI | MR | Zbl

[25] Yu. V. Yanilkin, Yu. A. Bondarenko, E. A. Goncharov, A. R. Guzhova, V. Yu. Kolobyanin, V. N. Sofronov, V. P. Statsenko, Tests for hydrocodes simulating shock wave flows in multi-component media, v. 1, Gas dynamics, FSUE «RFNC-VNIIEF», Sarov, 2017, 169 pp.

[26] P. Le Floch, T. P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form”, Forum Mathematicum, 5 (1993), 261–280 | DOI | MR | Zbl

[27] X. Zhong, C. W. Shu, “A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods”, J. Comput. Phys., 232:1 (2013), 397–415 | DOI | MR

[28] X. Zhong, C. W. Shu, “On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes”, J. Comput. Phys., 229:23 (2010), 8918–8934 | DOI | MR

[29] L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, J. E. Flaherty, “Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws”, Applied Numerical Mathematics, 48 (2004), 323–338 | DOI | MR | Zbl

[30] I. S. Menshov, A. A. Serezhkin, “Numerical Model of Multiphase Flows Based on Sub-Cell Resolution of Fluid Interfaces”, Math. and Math. Physics, 62 (2022), 1723–1742 | DOI | MR | Zbl