Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_4_a1, author = {A. O. Lapich and M. Y. Medvedik}, title = {Method of generalized and combined computational grids for restoration the parameters of inhomogeneities of a body based on the results of measurements of the electromagnetic field}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {24--36}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a1/} }
TY - JOUR AU - A. O. Lapich AU - M. Y. Medvedik TI - Method of generalized and combined computational grids for restoration the parameters of inhomogeneities of a body based on the results of measurements of the electromagnetic field JO - Matematičeskoe modelirovanie PY - 2024 SP - 24 EP - 36 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a1/ LA - ru ID - MM_2024_36_4_a1 ER -
%0 Journal Article %A A. O. Lapich %A M. Y. Medvedik %T Method of generalized and combined computational grids for restoration the parameters of inhomogeneities of a body based on the results of measurements of the electromagnetic field %J Matematičeskoe modelirovanie %D 2024 %P 24-36 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a1/ %G ru %F MM_2024_36_4_a1
A. O. Lapich; M. Y. Medvedik. Method of generalized and combined computational grids for restoration the parameters of inhomogeneities of a body based on the results of measurements of the electromagnetic field. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 24-36. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a1/
[1] P. M. Meaney, Q. Fang, T. Rubaek, E. Demidenko, K. D. Paulsen, “Log transformation ben-efits parameter estimation in microwave tomographic imaging”, Med. Phys., 34:6 (2007), 2014–2023 | DOI
[2] Y. G. Smirnov, A. A. Tsupak, M. Y. Medvedik, “Non-iterative two-step method for solving sca-lar inverse 3D diffraction problem”, Inverse Problems in Science and Engineering, 28:10 (2020), 1474–1492 | DOI | MR | Zbl
[3] M. Y. Medvedik, Y. G. Smirnov, A. A. Tsupak, “The two-step method for determining a piece-wise-continuous refractive index of a 2D scatterer by near field measurements”, Inverse Problems in Science and Engineering, 28:3 (2020), 427–447 | DOI | MR | Zbl
[4] Y. G. Smirnov, A. A. Tsupak, M. Y. Medvedik, “Inverse vector problem of diffraction by inhomogeneous body with a piecewise smooth permittivity”, J. of Inverse and Ill-Posed Problems, 2023 | MR
[5] Y. G. Smirnov, A. A. Tsupak, Diffraction of Acoustic and Electromagnetic Waves by Screens and Inhomogeneous Solids: Mathematical Theory, Ru-Science, M., 2016, 216 pp. | MR
[6] Y. G. Smirnov, A. A. Tsupak, M. Y. Medvedik, “Two-Step Method for Solving Inverse Problem of Diffraction by an Inhomogenous Body”, Nonlinear and inverse problems in electromagnetics, 2018, 83–92 | MR | Zbl
[7] M. Y. Medvedik, R. O. Evstigneev, E. A. Gundarev, “Obratnaia zadacha opredeleniia parametrov neodnorodnosti tel, raspolozhennykh v svobodnom prostranstve”, Izvestiia VUZ. Povolzhskii region. Fiziko-mat. nauki, 2018, no. 4, 50–61
[8] A. B. Bakushinsky, M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer, New York, 2004, 291 pp. | MR | Zbl
[9] H. Ammari, H. Kan, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2004, 238 pp. | DOI | MR | Zbl
[10] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU, The Netherlands, 1986, 239 pp. | MR
[11] L. Beilina, M. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient, Inverse Problems, Springer, New York, 2012, 419 pp. | Zbl
[12] R. O. Evstigneev, M. Y. Medvedik, “Reconstruction of inhomogeneities in a hemisphere from the field measurements”, Lobachevskii J. of Mathematics, 40:10 (2019), 1653–1659 | DOI | MR | Zbl
[13] Y. Wang, T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations”, Commun. Partial Differ. Equation, 44:11 (2019), 1140–1158 | DOI | MR | Zbl
[14] R. Liu, H. Yu, H. Yu., “Singular value decomposition-based 2D image reconstruction for computed tomography”, J. XRay Sci. Technol., 25:1 (2016), 1–22 | MR
[15] Y. Xu, H. Yu, A. Sushmit, Q. Lyu, G. Wang, Y. Li, X. CAO, J. S. Maltz, “Cardiac CT motion artifact grading via semi-automatic labeling and vessel tracking using synthetic image-augmented training data”, J. XRay Sci. Technol., 30:3 (2022), 433–445
[16] M. E. Davison, “A singular value decomposition for the Radon transform in $n$-dimensional Euclidean space”, Numer. Funct. Anal. Optimiz., 3 (1981), 321–340 | DOI | MR | Zbl
[17] V.G. Romanov, “An Inverse Problem for a Semilinear Wave Equation”, Dokl. Math., 105 (2022), 166–170 | DOI | MR | Zbl
[18] M. Y. Medvedik, Y. G. Smirnov, “A subhierarchical parallel computational algorithm for solv-ing problems of diffraction by plane screens”, Journal of Communications Technology and Electronics, 53 (2008), 415–420 | DOI
[19] A. B. Samokhin, Integral Equations and Iteration Methods in Electromagnetic Scattering, VSP Publisher, 2001, 101 pp. | Zbl
[20] R. Kress, Linear Integral Equations, Applied Mathematical Sciences, 82, Springer-Verlag. Inc, NY, 1989, 412 pp. | DOI | MR | Zbl
[21] M. Y. Medvedik, Y. G. Smirnov, Obratnye zadachi vosstanovleniia dielektricheskoi pronitsaemosti neodnorodnogo tela v volnovode, PSU, Penza, 2014, 75 pp.