Numerical investigation of vortices generator influence on the supersonic flow around wing
Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of a numerical investigation and analysis of the effect of vortex structures from an upstream generator wing on the supersonic flow around the main wing. Effect of the generator wing span is also considered. Numerical results were obtained on the multiprocessor hybrid supercomputer system K-60 at the Keldysh Institute of Applied Mathematics RAS.
Keywords: wing tandem, supersonic flow, supersonic vortices interaction, influence of incoming flow disturbances.
@article{MM_2024_36_4_a0,
     author = {V. E. Borisov and T. V. Konstantinovskaya and A. E. Lutsky},
     title = {Numerical investigation of vortices generator influence on the supersonic flow around wing},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/}
}
TY  - JOUR
AU  - V. E. Borisov
AU  - T. V. Konstantinovskaya
AU  - A. E. Lutsky
TI  - Numerical investigation of vortices generator influence on the supersonic flow around wing
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 3
EP  - 23
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/
LA  - ru
ID  - MM_2024_36_4_a0
ER  - 
%0 Journal Article
%A V. E. Borisov
%A T. V. Konstantinovskaya
%A A. E. Lutsky
%T Numerical investigation of vortices generator influence on the supersonic flow around wing
%J Matematičeskoe modelirovanie
%D 2024
%P 3-23
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/
%G ru
%F MM_2024_36_4_a0
V. E. Borisov; T. V. Konstantinovskaya; A. E. Lutsky. Numerical investigation of vortices generator influence on the supersonic flow around wing. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/

[1] R. T. Jones, Estimated lift-drag ratios at supersonic speed, NASA TN-1350, 1947 | MR

[2] L. C. Squire, “Flow regimes over delta wings at supersonic and hypersonic speeds”, Aero. Quart., 27 (1976), 1–14 | DOI | MR

[3] J. H.B. Smith, A review of separation in steady three-dimensional flow, AGARD CP-168, 1975

[4] A. M. Gaifullin, Vikhrevye techeniia, Nauka, M., 2015, 319 pp.

[5] A. S. Ginevskij, A. I. Zhelannikov, Vikhrevye sledy samoletov, Fizmatlit, M., 2008, 172 pp.

[6] V. V. Vyshinskij, G. G. Sudakov, “Vikhrevoj sled samoleta i voprosy bezopasnosti poletov”, Trudy MFTI, 1(3) (2009), 73–93

[7] P. R. Spalart, “Airplane trailing vortices”, Annual Review of Fluid Mechanics, 30:1 (1998), 107–138 | DOI | MR | Zbl

[8] V. Rossow, “Lift-Generated Vortex Wake of Subsonic Transport Aircraft”, Progress in Aerospace Sciences, 35 (1999), 507–660 | DOI

[9] V. E. Borisov, T. V. Konstantinovskaya, A. E. Lutsky, “Investigation of Vortex Structures in the Supersonic Flow around a Tandem of Wings”, Mathematical Models and Computer Simulations, 15:1 (2023), 59–72 | DOI | DOI | MR | MR | Zbl

[10] G. C. "Cliff" Hay, R. H. Passman et all, Wake Turbulence Training Aid, FAA Report, DOT-VNTSC-FAA-95-4, United States Department of Transportation, 1995

[11] O. Lucca-Negro, T. O'Doherty, “Vortex breakdown: a review”, Progress in Energy and Combustion Science, 27 (2001), 431–481 | DOI

[12] F. T. Zurheide, G. Huppertz, E. Fares, M. Meinke, W. Schröder, “Interaction of Wing-Tip Vortices and Jets in the Extended Wake”, Summary of Flow Modu-lation and Fluid-Structure Interaction Findings, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 109, ed. Schröder W., Springer, Berlin–Heidelberg, 2010 | DOI

[13] A. S. Shmakov, A. M. Shevchenko, A. A. Yatskikh, Yu. G. Yermolaev, “Mass flow and its pulsation measurements in supersonic wing wake”, Proc. AIP Conf., 1770, 2016, 030019 | DOI

[14] A. S. Shmakov, A. M. Shevchenko, “Osobennosti i problemy eksperimentalnogo issledovaniia sverkhzvukovykh vikhrevykh techenii”, Problemy mekhaniki: teoriia, eksperiment i novye tekhnologii, tezisy dokladov XIII Vserossiiskoi konferentcii molodykh uchenykh (Novosibirsk Sheregesh, 15 - 22 march 2019), Novosibirsk, 2019, 184–185

[15] T. Hiejima, “A factor involved in efficient breakdown of supersonic streamwise vortices”, Physics of Fluids, 27 (2015), 034103 | DOI

[16] V. E. Borisov, A. A. Davydov, T. V. Konstantinovskaya, AE. Lutsky, A. M. Shevchenko, A. S. Shmakov, “Numerical and experimental investigation of a supersonic vortex wake at a wide distance from the wing”, Proc. AIP Conf., 2027, 2018, 030120 | DOI

[17] D. P. Rizzetta, “Numerical investigation of supersonic wing-tip vortices”, AIAA J., 34:6 (1996), 1203–1208 | DOI

[18] T. Hiejima, “Streamwise vortex breakdown in supersonic flows”, Physics of Fluids, 29 (2017), 054102 | DOI

[19] T. Hiejima, “Stability of compressible streamwise vortices”, Physics of Fluids, 27 (2015), 074107 | DOI

[20] T. Gallay, Y. Maekawa, Three-dimensional stability of Burgers vortices \, 2010, arXiv: 1002.2489v1 [math.AP] | MR

[21] V. N. Zudov, E. A. Pimonov, “Interaction of a Streamwise Vortex with an Oblique Shock Wave”, Journal of Applied Mechanics and Technical Physics, 44 (2003), 461–470 | DOI | MR | Zbl

[22] V. N. Zudov, “Interaction of a streamwise vortex with the normal shock”, Journal of Applied Mechanics and Technical Physics, 52 (2011), 734–743 | DOI | Zbl

[23] K. A. Osipov, Upravlenie vikhrevym obtekaniem sverkhzvukovykh manevrennykh samoletov na bolshikh uglakh ataki, avtoreferat dissertatsii, Tsentralnyi aerogidrodinamicheskii institute im. prof. N.E. Zhukovskogo, M., 2019

[24] S. E. Morris, C. H.K. Williamson, “Spatial development of trailing vortices behind a delta wing, in and out of ground effect”, Experiments in Fluids, 61:11 (2020) | DOI

[25] M. K. Smart, I. M. Kalkhoran, The Effect of shock strength on oblique shock wave-vortex interaction, AIAA Paper No 95-0098, Jan. 1995

[26] A. A. Zheltovodov, E. A. Pimonov, Doyle D. Knight, “Numerical modeling of vortex/shock wave interaction and its transformation by localized energy deposition”, Shock Waves, 17 (2007), 273–290 | DOI | Zbl

[27] V. Ya. Borovoy, T. V. Kubyshina, A. S. Skuratov, L. V. Yakovleva, “Vortex in a Supersonic Flow and its Influence on Blunt Body Flow and Heat Transfer”, Fluid Dynamics, 35 (2000), 682–691 | DOI

[28] T. Hiejima, “Criterion for vortex breakdown on shock wave and streamwise vortex interac-tions”, Physical Review E, 89:5 (2014) | DOI

[29] C. Chen, Z. Wang, D. Cleaver, I. Gursul, “Interaction of Trailing Vortices with Downstream Wings”, 54th AIAA Aerospace Sciences Meeting, 2016 | DOI

[30] C. Chen, Z. Wang, I. Gursul, “Experiments on tip vortices interacting with downstream wings”, Experiments in Fluids, 59 (2018) | DOI

[31] C. J. Barnes, M. R. Visbal, P. G. Huang, “On the effects of vertical offset and core structure in streamwise-oriented vortex-wing interactions”, Journal of Fluid Mechanics, 799 (2016), 128–158 | DOI | MR | Zbl

[32] F. Y. Wang, M. Milanovict, K. B.M. Q. Zaman, L. A. Povinelli, “A Quantitative Comparison of Delta Wing Vortices in the Near-Wake for Incompressible and Supersonic Free Streams”, Journal of Fluids Engineering, 127:6 (2005), 1070–1084

[33] C. Feng, S. Chen, “A wide-speed-range aerodynamic configuration by adopting wave-ridingstrake wing”, Acta Astronautica, 2022, 442–452

[34] V. E. Borisov, T. V. Konstantinovskaya, A. E. Lutsky, “Vliianie kontsevogo vikhria kryla-generatora na obtekanie osnovnogo kryla pod uglom ataki”, Preprinty IPM im. M.V. Keldysha, 2023, 032

[35] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Imple-mentation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (9-13 July 2012, Big Island, Hawaii)

[36] J. R. Edwards, S. Chandra, “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, 34:4 (1996), 756–763 | DOI

[37] NASA Turbulence Modeling Resource, https://turbmodels.larc.nasa.gov/spalart.html

[38] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutsky, I. S. Men'shov, “Parallel Implementation of an Implicit Scheme Based on the LU-SGS Method for 3D Turbulent Flows”, Mathematical Models and Computer Simulations, 7:3 (2015), 222–232 | DOI | MR | Zbl

[39] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlya rascheta trekhmernykh turbulentnykh techenii vyazkogo szhimaemogo gaza na vysokoproizvoditel'nykh vychislitel'nykh sistemekh, Svidetel'stvo o registratsii programmy dlia EVM RU 2019667338, 23.12.2019

[40] Supercomputer system K-60

[41] C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Y. Zhang, X. Cai, N. Gui, “Third generation of vortex identification methods: Omega and Liutex/Rortex based systems”, J. Hydrodyn., 31:2 (2019), 205–223 | DOI | MR

[42] X. Dong, Y. Gao, C. Liu, New normalized Rortex/vortex identification method, Phys. Fluids, 31, 2019, 6 pp. | DOI

[43] T. V. Konstantinovskaya, V. E. Borisov, A. A. Davydov, A. E. Lutsky, A. M. Shevchenko, “Vzai-modeistvie dvukh protivopolozhno vrashchaiushchikhsia sverkhzvukovykh vikhrei”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 21:1 (2020) | DOI