Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2024_36_4_a0, author = {V. E. Borisov and T. V. Konstantinovskaya and A. E. Lutsky}, title = {Numerical investigation of vortices generator influence on the supersonic flow around wing}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--23}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/} }
TY - JOUR AU - V. E. Borisov AU - T. V. Konstantinovskaya AU - A. E. Lutsky TI - Numerical investigation of vortices generator influence on the supersonic flow around wing JO - Matematičeskoe modelirovanie PY - 2024 SP - 3 EP - 23 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/ LA - ru ID - MM_2024_36_4_a0 ER -
%0 Journal Article %A V. E. Borisov %A T. V. Konstantinovskaya %A A. E. Lutsky %T Numerical investigation of vortices generator influence on the supersonic flow around wing %J Matematičeskoe modelirovanie %D 2024 %P 3-23 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/ %G ru %F MM_2024_36_4_a0
V. E. Borisov; T. V. Konstantinovskaya; A. E. Lutsky. Numerical investigation of vortices generator influence on the supersonic flow around wing. Matematičeskoe modelirovanie, Tome 36 (2024) no. 4, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2024_36_4_a0/
[1] R. T. Jones, Estimated lift-drag ratios at supersonic speed, NASA TN-1350, 1947 | MR
[2] L. C. Squire, “Flow regimes over delta wings at supersonic and hypersonic speeds”, Aero. Quart., 27 (1976), 1–14 | DOI | MR
[3] J. H.B. Smith, A review of separation in steady three-dimensional flow, AGARD CP-168, 1975
[4] A. M. Gaifullin, Vikhrevye techeniia, Nauka, M., 2015, 319 pp.
[5] A. S. Ginevskij, A. I. Zhelannikov, Vikhrevye sledy samoletov, Fizmatlit, M., 2008, 172 pp.
[6] V. V. Vyshinskij, G. G. Sudakov, “Vikhrevoj sled samoleta i voprosy bezopasnosti poletov”, Trudy MFTI, 1(3) (2009), 73–93
[7] P. R. Spalart, “Airplane trailing vortices”, Annual Review of Fluid Mechanics, 30:1 (1998), 107–138 | DOI | MR | Zbl
[8] V. Rossow, “Lift-Generated Vortex Wake of Subsonic Transport Aircraft”, Progress in Aerospace Sciences, 35 (1999), 507–660 | DOI
[9] V. E. Borisov, T. V. Konstantinovskaya, A. E. Lutsky, “Investigation of Vortex Structures in the Supersonic Flow around a Tandem of Wings”, Mathematical Models and Computer Simulations, 15:1 (2023), 59–72 | DOI | DOI | MR | MR | Zbl
[10] G. C. "Cliff" Hay, R. H. Passman et all, Wake Turbulence Training Aid, FAA Report, DOT-VNTSC-FAA-95-4, United States Department of Transportation, 1995
[11] O. Lucca-Negro, T. O'Doherty, “Vortex breakdown: a review”, Progress in Energy and Combustion Science, 27 (2001), 431–481 | DOI
[12] F. T. Zurheide, G. Huppertz, E. Fares, M. Meinke, W. Schröder, “Interaction of Wing-Tip Vortices and Jets in the Extended Wake”, Summary of Flow Modu-lation and Fluid-Structure Interaction Findings, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 109, ed. Schröder W., Springer, Berlin–Heidelberg, 2010 | DOI
[13] A. S. Shmakov, A. M. Shevchenko, A. A. Yatskikh, Yu. G. Yermolaev, “Mass flow and its pulsation measurements in supersonic wing wake”, Proc. AIP Conf., 1770, 2016, 030019 | DOI
[14] A. S. Shmakov, A. M. Shevchenko, “Osobennosti i problemy eksperimentalnogo issledovaniia sverkhzvukovykh vikhrevykh techenii”, Problemy mekhaniki: teoriia, eksperiment i novye tekhnologii, tezisy dokladov XIII Vserossiiskoi konferentcii molodykh uchenykh (Novosibirsk Sheregesh, 15 - 22 march 2019), Novosibirsk, 2019, 184–185
[15] T. Hiejima, “A factor involved in efficient breakdown of supersonic streamwise vortices”, Physics of Fluids, 27 (2015), 034103 | DOI
[16] V. E. Borisov, A. A. Davydov, T. V. Konstantinovskaya, AE. Lutsky, A. M. Shevchenko, A. S. Shmakov, “Numerical and experimental investigation of a supersonic vortex wake at a wide distance from the wing”, Proc. AIP Conf., 2027, 2018, 030120 | DOI
[17] D. P. Rizzetta, “Numerical investigation of supersonic wing-tip vortices”, AIAA J., 34:6 (1996), 1203–1208 | DOI
[18] T. Hiejima, “Streamwise vortex breakdown in supersonic flows”, Physics of Fluids, 29 (2017), 054102 | DOI
[19] T. Hiejima, “Stability of compressible streamwise vortices”, Physics of Fluids, 27 (2015), 074107 | DOI
[20] T. Gallay, Y. Maekawa, Three-dimensional stability of Burgers vortices \, 2010, arXiv: 1002.2489v1 [math.AP] | MR
[21] V. N. Zudov, E. A. Pimonov, “Interaction of a Streamwise Vortex with an Oblique Shock Wave”, Journal of Applied Mechanics and Technical Physics, 44 (2003), 461–470 | DOI | MR | Zbl
[22] V. N. Zudov, “Interaction of a streamwise vortex with the normal shock”, Journal of Applied Mechanics and Technical Physics, 52 (2011), 734–743 | DOI | Zbl
[23] K. A. Osipov, Upravlenie vikhrevym obtekaniem sverkhzvukovykh manevrennykh samoletov na bolshikh uglakh ataki, avtoreferat dissertatsii, Tsentralnyi aerogidrodinamicheskii institute im. prof. N.E. Zhukovskogo, M., 2019
[24] S. E. Morris, C. H.K. Williamson, “Spatial development of trailing vortices behind a delta wing, in and out of ground effect”, Experiments in Fluids, 61:11 (2020) | DOI
[25] M. K. Smart, I. M. Kalkhoran, The Effect of shock strength on oblique shock wave-vortex interaction, AIAA Paper No 95-0098, Jan. 1995
[26] A. A. Zheltovodov, E. A. Pimonov, Doyle D. Knight, “Numerical modeling of vortex/shock wave interaction and its transformation by localized energy deposition”, Shock Waves, 17 (2007), 273–290 | DOI | Zbl
[27] V. Ya. Borovoy, T. V. Kubyshina, A. S. Skuratov, L. V. Yakovleva, “Vortex in a Supersonic Flow and its Influence on Blunt Body Flow and Heat Transfer”, Fluid Dynamics, 35 (2000), 682–691 | DOI
[28] T. Hiejima, “Criterion for vortex breakdown on shock wave and streamwise vortex interac-tions”, Physical Review E, 89:5 (2014) | DOI
[29] C. Chen, Z. Wang, D. Cleaver, I. Gursul, “Interaction of Trailing Vortices with Downstream Wings”, 54th AIAA Aerospace Sciences Meeting, 2016 | DOI
[30] C. Chen, Z. Wang, I. Gursul, “Experiments on tip vortices interacting with downstream wings”, Experiments in Fluids, 59 (2018) | DOI
[31] C. J. Barnes, M. R. Visbal, P. G. Huang, “On the effects of vertical offset and core structure in streamwise-oriented vortex-wing interactions”, Journal of Fluid Mechanics, 799 (2016), 128–158 | DOI | MR | Zbl
[32] F. Y. Wang, M. Milanovict, K. B.M. Q. Zaman, L. A. Povinelli, “A Quantitative Comparison of Delta Wing Vortices in the Near-Wake for Incompressible and Supersonic Free Streams”, Journal of Fluids Engineering, 127:6 (2005), 1070–1084
[33] C. Feng, S. Chen, “A wide-speed-range aerodynamic configuration by adopting wave-ridingstrake wing”, Acta Astronautica, 2022, 442–452
[34] V. E. Borisov, T. V. Konstantinovskaya, A. E. Lutsky, “Vliianie kontsevogo vikhria kryla-generatora na obtekanie osnovnogo kryla pod uglom ataki”, Preprinty IPM im. M.V. Keldysha, 2023, 032
[35] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Imple-mentation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (9-13 July 2012, Big Island, Hawaii)
[36] J. R. Edwards, S. Chandra, “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, 34:4 (1996), 756–763 | DOI
[37] NASA Turbulence Modeling Resource, https://turbmodels.larc.nasa.gov/spalart.html
[38] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutsky, I. S. Men'shov, “Parallel Implementation of an Implicit Scheme Based on the LU-SGS Method for 3D Turbulent Flows”, Mathematical Models and Computer Simulations, 7:3 (2015), 222–232 | DOI | MR | Zbl
[39] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlya rascheta trekhmernykh turbulentnykh techenii vyazkogo szhimaemogo gaza na vysokoproizvoditel'nykh vychislitel'nykh sistemekh, Svidetel'stvo o registratsii programmy dlia EVM RU 2019667338, 23.12.2019
[40] Supercomputer system K-60
[41] C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Y. Zhang, X. Cai, N. Gui, “Third generation of vortex identification methods: Omega and Liutex/Rortex based systems”, J. Hydrodyn., 31:2 (2019), 205–223 | DOI | MR
[42] X. Dong, Y. Gao, C. Liu, New normalized Rortex/vortex identification method, Phys. Fluids, 31, 2019, 6 pp. | DOI
[43] T. V. Konstantinovskaya, V. E. Borisov, A. A. Davydov, A. E. Lutsky, A. M. Shevchenko, “Vzai-modeistvie dvukh protivopolozhno vrashchaiushchikhsia sverkhzvukovykh vikhrei”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 21:1 (2020) | DOI