On one boundary model in problems of gas flow around solids
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 147-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the development of a multiscale approach to calculating gas flows near solid surfaces taking into account microscopic effects. Within the framework of this line of research, the problem of setting boundary conditions on the surface of a solid body is considered, taking into account these effects, previously calculated at the atomic-molecular level. The main goal of the work is to formulate macroscopic boundary equations that take into account processes on the surface of a solid body flown around by gas. The macroscopic model is based on a system of quasi-gasdynamic (QGD) equations in the volume and the thermal conductivity equation in the surface layer of the body in a streamlined body. The system is supplemented with real gas state equations and dependences of the kinetic coefficients of the QGD equations on temperature and pressure, obtained on the basis of molecular dynamics calculations. To test the proposed boundary equations, the problem of gas flow around a blunt body is considered. Dry air was selected as the gas. Nickel was chosen as the body coating. Calculations were carried out for two values of inlet velocity. They confirmed the qualitative correctness of the developed boundary model and the entire modeling technology.
Keywords: gas flows near solids, multiscale approach, boundary model, numerical algorithms, parallel computing.
Mots-clés : quasi-gasdynamics
@article{MM_2024_36_3_a9,
     author = {S. V. Polyakov and V. O. Podryga},
     title = {On one boundary model in problems of gas flow around solids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {147--161},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a9/}
}
TY  - JOUR
AU  - S. V. Polyakov
AU  - V. O. Podryga
TI  - On one boundary model in problems of gas flow around solids
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 147
EP  - 161
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a9/
LA  - ru
ID  - MM_2024_36_3_a9
ER  - 
%0 Journal Article
%A S. V. Polyakov
%A V. O. Podryga
%T On one boundary model in problems of gas flow around solids
%J Matematičeskoe modelirovanie
%D 2024
%P 147-161
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a9/
%G ru
%F MM_2024_36_3_a9
S. V. Polyakov; V. O. Podryga. On one boundary model in problems of gas flow around solids. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 147-161. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a9/

[1] G. N. Abramovich, Prikladnaia gazovaia dinamika, M., 1969, 824 pp.

[2] A. A. Dorodnitsyn, “Pogranichnyi sloi v szhimaemom gaze”, Prikladnaia matematika i mekhanika, 6:6 (1942), 449–486 | Zbl

[3] N. E. Kochin, I. A. Kibel, N. V. Roze, Teoreticheskaia gidromekhanika, v. 2, Gostekh-izdat, M., 1948, 612 pp.

[4] V. V. Struminskii, “Trekhmernyi pogranichnyi sloi na proizvolnoi poverkhnosti”, Doklady Akademii nauk SSSR, 108:4 (1956), 595–598 | Zbl

[5] L. G. Loitsianskii, Laminarnyi pogranichnyi sloi, Fizmatlit, M., 1962, 480 pp.

[6] H. Schlichting, Boundary layer theory, Pergamon Press, London, 1955, 535 pp. | MR | Zbl

[7] A. A. Samarskii, A. P. Mikhailov, Principles of mathematical modelling. Ideas, methods, examples, CRC Press, London, 2001, 360 pp. | MR | MR

[8] G. A. Bird, Molecular gas dynamics, Clarendon Press, Oxford, UK, 1976, 238 pp.

[9] Y. Y. Kloss, V. V. Ryabchenkov, F. G. Tcheremissine, P. V. Shuvalov, “Interaction of a shock wave with a boundary layer in a micro channel”, Mathematical Models and Computer Simulations, 3:6 (2011), 744–750 | DOI | Zbl

[10] V. L. Kovalev, V. Yu. Sazonova, A. N. Yakunchikov, “Modelirovanie vzaimodeistviia strui razrezhennogo gaza s pregradoi metodami molekuliarnoi dinamiki”, Vestn. Mosk. Un-ta. Matem. Mekhan., 2008, no. 2, 56–58 | Zbl

[11] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | Zbl

[12] V. O. Podryga, S. V. Polyakov, D. V. Puzyrkov, “Superkompiuternoe molekuliarnoe mode-lirovanie termodinamicheskogo ravnovesiia v mikrosistemakh gaz-metall”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 123–138

[13] S. V. Polyakov, V. O. Podryga, T. A. Kudryashova, “HPC simulation of non-linear processes in microsystems gas-metal”, Lobachevskii J. of Mathematics, 41:8 (2020), 1553–1561 | DOI | MR

[14] V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “Multiscale simulation of three-dimensional unsteady gas flows in microchannels of technical systems”, Proc. of VII European Congress on Comp. Methods in Applied Sci. Eng. (Crete Island, Greece, 5-10 June 2016), v. 2, eds. M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris, 8869, 2331–2345

[15] V. O. Podryga, S. V. Polyakov, “Superkompiuternoe mnogomasshtabnoe modelirovanie techenii gazovykh smesei v mikrokanalakh”, Vych. metody i progr., 19:1 (2018), 38–50

[16] T. Kudryashova, Yu. Karamzin, V. Podryga, S. Polyakov, “Two-scale computation of N2-H2 jet flow based on QGD and MMD on heterogeneous multi-core hardware”, Advances in Engineering Software, 120 (2018), 79–87 | DOI

[17] V. O. Podryga, S. V. Polyakov, “Correction of boundary conditions in micromodels by molecular dynamic method”, Smart Modelling for Engineering Systems, Proc. of the Intern. Conf. on Comput. Methods in Continuum Mechanics (CMCM 2021), v. 2, Smart Innovation, Systems and Technologies, 215, eds. M.N. Favorskaya, A.V. Favorskaya, I.B. Petrov, L.C. Jain, 2021, 9–24 | DOI | MR

[18] S. V. Polyakov, V. O. Podryga, “A study of nonlinear processes at the interface between gas flow and the metal wall of a microchannel”, Comput. Res. Modeling, 14:4 (2022), 781–794 | DOI

[19] T. G. Elizarova, Quasi-gas dynamic equations, Springer-Verlag, Berlin–Heidelberg–NY, 2009, 286 pp. | MR | Zbl

[20] A. A. Zlotnik, “O kvazigazodinamicheskoi sisteme uravnenii s obshchimi uravneniiami sostoianiia i istochnikom tepla”, Matematicheskoe modelirovanie, 22:7 (2010), 53–64 | MR | Zbl

[21] Baza dannykh NIST. Standartnye spravochnye dannye, https://www.nist.gov/srd/

[22] J. M. Haile, Molecular dynamics simulations. Elementary methods, John Wiley Sons, Inc., NY, 1992, 489 pp.

[23] D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, 2002, 638 pp.

[24] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press, Cambridge, 2004, 564 pp. | Zbl

[25] O. M. Belotserkovskii, IU. M. Davydov, Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982, 370 pp.

[26] D. V. Sadin, “Efficient implementation of the hybrid large particle method”, Mathematical Models and Computer Simulations, 14:6 (2022), 946–954 | DOI | DOI | MR

[27] C. K. Birsdall, D. Fuss, “Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation”, Journal of Computational Physics, 3:4 (1969), 494–511 | DOI

[28] J. J. Monaghan, “An introduction to SPH”, Computer Phys. Commun., 48 (1988), 88–96 | DOI

[29] J. J. Monaghan, “Smoothed particle hydrodynamics”, Rep. Prog. Phys., 68 (2005), 1703–1759 | DOI | MR

[30] V. P. Ilin, Metody konechnykh raznostei i konechnykh obemov dlia ellipticheskikh uravnenii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2000, 345 pp.

[31] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, 7, North Holland Publishing Company, Amsterdam, 2000, 713–1020 | MR | Zbl

[32] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Univ. Press, 2002, 558 pp. | MR | Zbl

[33] T. A. Kudryashova, S. V. Polyakov, A. A. Sverdlin, “Calculation of gas flow parameters around reentry vehicle”, Math. Models and Comput. Simul., 1:4 (2009), 445–452 | DOI | Zbl

[34] B. F. Smith, “Domain decomposition methods for partial differential equations”, Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Eng., 4, eds. D.E. Keyes, A. Sameh, V. Venkatakrishnan, Springer, Dordrecht, 1997, 225–243 | DOI | MR

[35] A. A. Alakeel, “Guide to dynamic load balancing in distributed computer systems”, International Journal of Computer Science and Network Security, 10:6 (2009), 153–160

[36] ANSYS CFD, https://www.ansys.com/products/fluids