Dynamic model of formation and destruction of aggregates for describing the effect of isothermal supersaturation in an ion exchanger
Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 134-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a dynamic model for the formation and destruction of supersaturated phase particles in the intergranular space of an ionite for a quantitative description of the effect of isothermal supersaturation. The model is based on the idea of the existence of competition between the processes of association of particles of the supersaturated phase and their destruction under the action of the field of charges of the functional centers of the ion exchanger near its surface. As a result of this competition, a steady state of a supersaturated solution can be reached. It has been verified that the model describes the experimental data on measuring the degree of supersaturation as a function of time for solutions with the same component composition for two different ion exchangers.
Keywords: isothermal supersaturation, mathematical modeling, ion exchanger.
@article{MM_2024_36_3_a8,
     author = {M. A. Kaznacheev and N. A. Tikhonov},
     title = {Dynamic model of formation and destruction of aggregates for describing the effect of isothermal supersaturation in an ion exchanger},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {134--146},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2024_36_3_a8/}
}
TY  - JOUR
AU  - M. A. Kaznacheev
AU  - N. A. Tikhonov
TI  - Dynamic model of formation and destruction of aggregates for describing the effect of isothermal supersaturation in an ion exchanger
JO  - Matematičeskoe modelirovanie
PY  - 2024
SP  - 134
EP  - 146
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2024_36_3_a8/
LA  - ru
ID  - MM_2024_36_3_a8
ER  - 
%0 Journal Article
%A M. A. Kaznacheev
%A N. A. Tikhonov
%T Dynamic model of formation and destruction of aggregates for describing the effect of isothermal supersaturation in an ion exchanger
%J Matematičeskoe modelirovanie
%D 2024
%P 134-146
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2024_36_3_a8/
%G ru
%F MM_2024_36_3_a8
M. A. Kaznacheev; N. A. Tikhonov. Dynamic model of formation and destruction of aggregates for describing the effect of isothermal supersaturation in an ion exchanger. Matematičeskoe modelirovanie, Tome 36 (2024) no. 3, pp. 134-146. http://geodesic.mathdoc.fr/item/MM_2024_36_3_a8/

[1] G. Klein, S. Cherney, E. L. Ruddick, T. Vermeulen, “Calcium removal from sea water by fixed-bed ion exchange”, Desalination, 4:2 (1968), 158–166 | DOI

[2] D. N. Muraviev, “Ionoobmennoe izotermicheskoe peresyshchenie aminokislot”, Zhurnal fizicheskoy khimii, 53:2 (1979), 438–442

[3] D. N. Muraviev, V. I. Gorshkov, “Ochistka L-glutaminovoy kisloty ot primesi ratsemata metodom ionoobmennogo izotermicheskogo peresyshcheniia”, Zhurnal fizicheskoy khimii, 56:6 (1982), 1560–1562

[4] D. Muraviev, R. K. Khamizov, N. A. Tikhonov, V. V. Kirshin, “Dynamics of ion exchange in supersaturated solutions”, Langmuir, 13:26 (1997), 7186–7191 | DOI

[5] M. Ortueta, A. Celaya, F. Mijangos, D. Muraviev, “Mg$^{2+}$/NH4 Ion Exchange Kinetics under Isothermal Supersaturated Conditions”, Solvent Extraction and Ion Exchange, 26:4 (2008), 405–419 | DOI

[6] F. Mijangos, N. A. Tikhonov, M. Ortueta, A. Dautov, “Modelling of ion exchange kinetics in bimetallic systems”, Industrial and Eng. Chemistry Res, 41:5 (2002), 1357–1363 | DOI

[7] F. Mijangos, M. Kamel, G. Lesmes, D. Muraviev, “Synthesis of struvite by ion exchange isothermal supersaturation technique”, Reactive Functional Polymers, 60 (2004), 151–160 | DOI

[8] R. Kh. Khamizov, B. F. Myasoedov, N. A. Tikhonov, B. A. Rudenko, “General character of isothermal supersaturation in ion exchange”, Doklady Phys. Chem., 356:1-3 (1997), 310

[9] D. A. Muraviev, R. Kh. Khamizov, N. A. Tikhonov, “Ion-Exchange Isothermal Supersaturation”, Solvent Extraction and Ion Exchange, 16:1 (1998), 151–221 | DOI

[10] M. D. Imtiaj Ali, P. A. Schneider, “A fed-batch design approach of struvite system in controlled supersaturation”, Chem. Eng. Sci., 61:12 (2006), 3951–3961 | DOI

[11] A. C. Garciaa, J. S. Hansenc, N. Baileyc, L. H. Skibsteda, “Slow lactate gluconate exchange in calcium complexes during precipitation from supersaturated aqueous solutions”, Food Research International, 137 (2020), 109539 | DOI

[12] M. Vavrusova, B. Danielsen, A. Garcia, L. Skibsted, “Codissolution of calcium hydrogen-phosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability”, J. of Food Drug Anal., 26 (2018), 330–336 | DOI

[13] A. Putnis, M. Prieto, L. Fernandez Diaz, “Fluid supersaturation and crystallization in porous media”, Geological Magazine, 132 (1995), 1–13 | DOI

[14] F. Mijangos, A. Celaya, M. Ortueta, D. Muraviev, Ind. Eng. Chem. Res., 52 (2013), 10276–10283 | DOI

[15] A. Cashmore, R. Miller, H. Jolliffe, C. J. Brown, M. Lee, M. D. Haw, J. Sefcik, “Rapid assessment of crystal nucleation and growth kinetics: Comparison of seeded and unseeded experiments”, Cryst. Growth Des., 23 (2023), 4779–4790 | DOI

[16] N. A. Tikhonov, “On the phenomenon of isothermal supersaturation of solutions at ion exchange in porous media”, Journal of Mathematical Chemistry, 57 (2019), 315–326 | DOI | Zbl

[17] E. D. Shchukin, A. V. Pertsov, E. A. Amelin, Colloid and Surface Chemistry, Elsevier Sci, 2002, 774 pp.

[18] Chirag M. Mehta, Damien J. Batstone, “Nucleation and growth kinetics of struvite crystallization”, Water Research, 47:8 (2013), 2890–2900 | DOI